Granular Matter

, Volume 14, Issue 4, pp 531–552 | Cite as

Closure relations for shallow granular flows from particle simulations

  • Thomas Weinhart
  • Anthony R. Thornton
  • Stefan Luding
  • Onno Bokhove
Open Access
Original Paper

Abstract

The discrete particle method (DPM) is used to model granular flows down an inclined chute with varying basal roughness, thickness and inclination. We observe three major regimes: arresting flows, steady uniform flows and accelerating flows. For flows over a smooth base, other (quasi-steady) regimes are observed: for small inclinations the flow can be highly energetic and strongly layered in depth; whereas, for large inclinations it can be non-uniform and oscillating. For steady uniform flows, depth profiles of density, velocity and stress are obtained using an improved coarse-graining method, which provides accurate statistics even at the base of the flow. A shallow-layer model for granular flows is completed with macro-scale closure relations obtained from micro-scale DPM simulations of steady flows. We obtain functional relations for effective basal friction, velocity shape factor, mean density, and the normal stress anisotropy as functions of layer thickness, flow velocity and basal roughness.

Keywords

Discrete particle method Coarse graining Granular chute flow Depth-averaging Shallow-layer equations 

Notes

Acknowledgments

The authors would like to thank the Institute of Mechanics, Processes and Control, Twente (IMPACT) for the primary financial support of this work as part of the research program “Superdispersed multiphase flows”. The DPM simulations performed for this paper are undertaken in Mercury-DPM, which was initially developed within this IMPACT program. It is primarily developed by T. Weinhart, A. R. Thornton and D. Krijgsman as a joint project between the Multi ScaleMechanics (Mechanical Engineering) and the Mathematics of Computational Science (Applied Mathematics) groups at theUniversity of Twente. We also thank the NWO VICI grant 10828 and the DFG project SPP1482 B12 for financial support.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Akers B., Bokhove O.: Hydraulic flow through a contraction: multiple steady states. Phys. Fluids 20, 056601 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Allen, M.P., Tildesley, D.J. (eds): Computer Simulation of Liquids. Oxford University Press, Clarendon (1993)Google Scholar
  3. 3.
    Babic M.: Average balance equations for granular materials. Int. J. Eng. Sci. 35(5), 523–548 (1997)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bagnold R.A.: Experiments on a gravity-free dispersion of large spheres in a Newtonian fluid under shear. Proc. R. Soc. A 255, 49–63 (1954)ADSCrossRefGoogle Scholar
  5. 5.
    Borzsonyi T., Ecke R.E.: Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag. Phys. Rev. E 74(6), 9 (2006)CrossRefGoogle Scholar
  6. 6.
    Borzsonyi T., Ecke R.E.: Flow rule of dense granular flows down a rough incline. Phys. Rev. E 76(3), 10 (2007)CrossRefGoogle Scholar
  7. 7.
    Bokhove O., Thornton A.R.: Shallow granular flows. In: Fernando, H.J. (eds) Handbook of Environmental Fluid Dynamics, Boca Raton, FL USA, ISBN:9781-43981-16691 (2012)Google Scholar
  8. 8.
    Cui X., Gray J.M.N.T., Johannesson T.: Deflecting dams and the formation of oblique shocks in snow avalanches at flateyri. J. Geophys. Res. 112, F04012 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  10. 10.
    Daerr A., Douady S.: Two types of avalanche behaviour in granular media. Nature 399(6733), 241–243 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Denlinger R.P., Iverson R.M.: Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests. J. Geophys. Res. 106(B1), 533–566 (2001)CrossRefGoogle Scholar
  12. 12.
    Dalbey K., Patra A.K., Pitman E.B., Bursik M.I., Sheridan M.F.: Input uncertainty propagation methods and hazard mapping of geophysical mass flows. J. Geophys. Res. 113, B05203 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Forterre Y., Pouliquen O.: Long-surface-wave instability in dense granular flows. J. Fluid Mech. 486, 21–50 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Gray J.M.N.T., Cui X.: Weak, strong and detached oblique shocks in gravity driven granular free-surface flows. J. Fluid Mech. 579, 113–136 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Goujon C., Dalloz-Dubrujeaud B., Thomas N.: Bidisperse granular avalanches on inlined planes: a rich variety of behaviors. Eur. Phys. J. E. 23(2), 199–215 (2007)CrossRefGoogle Scholar
  16. 16.
    Grigorian S.S., Eglit M.E., Yakimov Y.L.: New statement and solution of the problem of the motion of snow avalances. Physics of Snow, Avalanches and Glaciers, Tr Vysokogornogo Geofizich Inst. 12, 104–113 (1967)Google Scholar
  17. 17.
    Goldhirsch I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matter 12(3), 239–252 (2010)CrossRefGoogle Scholar
  18. 18.
    Goujon C., Thomas N., Dalloz-Dubrujeaud B.: Monodisperse dry granular flows on inclined planes; role of roughness. Eur. Phys. J. E. 11, 147–157 (2003)CrossRefGoogle Scholar
  19. 19.
    Gray J.M.N.T., Tai Y.C., Noelle S.: Shock waves, dead zones and particle-free regions in rapid granular free surface flows. J. Fluid Mech. 491, 161–181 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Gray J.M.N.T., Wieland M., Hutter K.: Free surface flow of cohesionless granular avalanches over complex basal topography. Proc. R. Soc. A 455, 1841–1874 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Hákonardóttir K.M., Hogg A.J.: Oblique shocks in rapid granular flows. Phys. Fluids 17, 077101 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hutter K., Siegel M., Savage S.B., Nohguchi Y.: Two-dimensional spreading of a granular avalanche down an inclined plane. 1. Theory. Acta Mech. 100(1–2), 37–68 (1993)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Irving J.H., Kirkwood J.G.: The statistical mechanical theory of transport processes. J. Chem. Phys. 18, 817 (1950)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Iverson R.M.: The physics of debris flows. Rev. Geophys. 35, 245–296 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Jenkins J.T., Berzi D.: Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granul. Matter 12, 151–158 (2010)CrossRefGoogle Scholar
  26. 26.
    Jenkins, J.T.: Hydraulic theory for a debris flow supported on a collisional shear layer. In: Proceedings of International Congress on Hydraulics Research IAHR, Tokyo, pp. 1–12 103307 (1993)Google Scholar
  27. 27.
    Jenkins J.T.: Dense shearing flows of inelastic disks. Phys. Fluids 18, 103307 (2006)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Jenkins J.T.: Dense inclined flows of inelastic spheres. Granul. Matter 10, 47–52 (2007)MATHCrossRefGoogle Scholar
  29. 29.
    Kulikovskii A.G., Eglit M.E.: Two-dimensional problem of the motion of a snow avalanche along a slope with smoothly changing properties. Prikladnaya Matematika i Mekhanika 37(5), 837–848 (1973)Google Scholar
  30. 30.
    Louge, M.Y., Keast, S.C.: On dense granular flows down flat frictional inclines. Phys. Fluids 13(5), 1213 (2001)Google Scholar
  31. 31.
    Luding, S., Lätzel, M., Volk, W., Diebels, S., Herrmann, H.J.: From discrete element simulations to a continuum model. Comput. Meth. Appl. Mech. Eng. 191, 21–28 (2001)Google Scholar
  32. 32.
    Louge, M.Y.: Model for dense granular fows down bumpy inclines. Phys. Rev. E 67, 061303 (2003)Google Scholar
  33. 33.
    Luding S.: Micro-macro models for anisotropic granular media. In: Vermeer, P.A., Ehlers, W., Herrmann, H.J., Ramm, E. (eds) Micro-Macro Models for Anisotropic Granular Media, pp. 195–206. A.A. Balkema, Leiden (2004)Google Scholar
  34. 34.
    Luding S.: Introduction to discrete element methods: basics of contact force models and how to perform the micro-marco transition to continuum theory. Eur. J. Environ. Civ. Eng. 12(7–8), 785–826 (2008)CrossRefGoogle Scholar
  35. 35.
    Luding S.: From molecular dynamics and particle simulations towards constitutive relations for continuum theory. In: Koren, B., Vuik, K. (eds) Advanced Computational Methods in Science and Engineering Lecture Notes in Computational Science and Engineering, Springer, New York, NY (2009)Google Scholar
  36. 36.
    MiDi G.D.R.: On dense granular flows. Eur. Phys. J. E. 14, 341–365 (2004)CrossRefGoogle Scholar
  37. 37.
    Pesch, L., Bell, A., Sollie, W.H., Ambati, V.R., Bokhove, O., Van der Vegt, J.J.W.: hpGEM a software framework for discontinous galerkin finite element methods. ACM Trans. Math. Softw. 33(4), Article No 23 (2007)Google Scholar
  38. 38.
    Pouliquen O., Forterre Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inlined plane. J. Fluid Mech. 453, 131–151 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Pouliquen O., Forterre Y.: A non-local rheology for dense granular flows. Phys. Eng. Sci. 367(1909), 5091–5107 (2009)MATHCrossRefGoogle Scholar
  40. 40.
    Pouliquen O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  41. 41.
    Shen S., Atluri S.N.: Atomic-level stress calculation and continuum molecular system equivalence. Comput. Model. Eng. Sci. 6(1), 91–104 (2004)MATHGoogle Scholar
  42. 42.
    Silbert, L.E., Ertas, D., Grest, G.S., Halsey, D., Levine, T.C., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E. 64, 051302 (2001)Google Scholar
  43. 43.
    Silbert, L.E., Grest, G.S., Plimpton, D. Levine, J.W.: Boundary effects and self-organization in dense granular ows. Phys. Fluids 14(8), 2637–2646 (2002)Google Scholar
  44. 44.
    Schofield P., Henderson J.R.: Statistical mechanics of inhomogenous fluids. Proc. R. Soc. 379, 231–246 (1982)ADSMATHCrossRefGoogle Scholar
  45. 45.
    Savage S.B., Hutter K.: The motion of a finite mass of material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    Silbert L.E., Landry J.W., Grest G.S.: Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids 15(1), 1–10 (2003)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Todd B.D., Evans D.J., Daivis P.J.: Pressure tensor for inhomogeneous fluids. Phys. Rev. E 52(2), 1627–1638 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    Taberlet N., Richard P., Jenkins J.T., Delannay R.: Density inversion in rapid granular flows: the supported regime. Eur. Phys. J. E Soft Matter Biol. Phy. 22(1), 17–24 (2007)CrossRefGoogle Scholar
  49. 49.
    Vreman A.W., Al-Tarazi M., Kuipers A.M., VanSint Annaland M., Bokhove O.: Supercritical shallow granular flow through a contraction: experiment, theory and simulation. J. Fluid Mech. 578, 233–269 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  50. 50.
    Weinan E., Engquist B., Li X., Ren W., Vanden-Eijnden E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)MathSciNetMATHGoogle Scholar
  51. 51.
    Williams R., Stinton A.J., Sheridan M.F.: Evaluation of the Titan 2D two-phase flow model using an actual event: Case study of the Vazcún valley lahar. J. Volcan. Geotherm. Res. 177, 760–766 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granul. Matter Special volume for Goldhirsch. pp. 1–69. ISSN:1434-5021. ISBN:10035-012-0317-4 (2012)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Thomas Weinhart
    • 1
    • 2
  • Anthony R. Thornton
    • 1
    • 2
  • Stefan Luding
    • 1
  • Onno Bokhove
    • 2
  1. 1.Multiscale Mechanics, Department of Mechanical EngineeringUniversity of TwenteEnschedeThe Netherlands
  2. 2.Numerical Analysis and Computation Mechanics, Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations