Skip to main content

Advertisement

Log in

The proteomic analysis shows enrichment of RNA surveillance pathways in adult SHH and extensive metabolic reprogramming in Group 3 medulloblastomas

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Medulloblastoma, a common malignant brain tumor in children, comprises four molecular subgroups WNT, SHH, Group 3, and Group 4. In the present study, we performed a deep proteome-based investigation of SHH, Group 3 and Group 4 tumors. The adult SHH medulloblastomas were found to have a distinct proteomic profile. Several RNA metabolism-related pathways including mRNA splicing, 5′ to 3′ RNA decay, 3′ to 5′ RNA decay by the RNA exosome, and the N6-methyladenosine modification of RNA were enriched in adult SHH tumors. The heightened expression of the RNA surveillance pathways is likely to be essential for the viability of adult SHH subgroup medulloblastomas, which carry mutations in U1snRNA encoding gene and thus could be a vulnerability of these tumors. Group 3 and Group 4 medulloblastomas, on the other hand, are known to have an overlap in their expression profiles and underlying genetic alterations. Group 3 proteome was found to be distinctively enriched in several metabolic pathways including glycolysis, gluconeogenesis, glutamine anabolism, glutathione-mediated anti-oxidant pathway, and drug metabolism pathway suggests that the extensive metabolic rewiring is likely to be responsible for the aggressive clinical behavior of Group 3 tumors. This comprehensive proteomic analysis has provided valuable insight into the biology of Group 3 and adult SHH medulloblastomas, which could be further explored for effective treatment of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Northcott PA, Robinson GW, Kratz CP et al (2019) Medulloblastoma. Nat Rev Dis Primers 5:11. https://doi.org/10.1038/s41572-019-0063-6

    Article  PubMed  Google Scholar 

  2. Taylor MD, Northcott PA, Korshunov A et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472. https://doi.org/10.1007/s00401-011-0922-z

    Article  CAS  PubMed  Google Scholar 

  3. Northcott PA, Buchhalter I, Morrissy AS et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547:311–317. https://doi.org/10.1038/nature22973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Northcott PA, Hielscher T, Dubuc A et al (2011) Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol 122:231–240. https://doi.org/10.1007/s00401-011-0846-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Remke M, Ramaswamy V, Peacock J et al (2013) TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol 126:917–929. https://doi.org/10.1007/s00401-013-1198-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki H, Kumar SA, Shuai S et al (2019) Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature 574:707–711. https://doi.org/10.1038/s41586-019-1650-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kool M, Korshunov A, Remke M et al (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123:473–484. https://doi.org/10.1007/s00401-012-0958-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang K, Li S, Mertins P et al (2017) Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun 8:14864. https://doi.org/10.1038/ncomms14864

    Article  PubMed  PubMed Central  Google Scholar 

  9. Scopes RK (1974) Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59:277–282. https://doi.org/10.1016/0003-2697(74)90034-7

    Article  CAS  PubMed  Google Scholar 

  10. Archer TC, Ehrenberger T, Mundt F et al (2018) Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell 34:396-410.e8. https://doi.org/10.1016/j.ccell.2018.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coscia F, Watters KM, Curtis M et al (2016) Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status. Nat Commun 7:12645. https://doi.org/10.1038/ncomms12645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilkinson ME, Charenton C, Nagai K (2020) RNA Splicing by the Spliceosome. Annu Rev Biochem 89:359–388. https://doi.org/10.1146/annurev-biochem-091719-064225

    Article  CAS  PubMed  Google Scholar 

  13. Kunder R, Jalali R, Sridhar E et al (2013) Real-time PCR assay based on the differential expression of microRNAs and protein-coding genes for molecular classification of formalin-fixed paraffin embedded medulloblastomas. Neuro Oncol 15:1644–1651. https://doi.org/10.1093/neuonc/not123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Laffleur B, Basu U (2019) Biology of RNA surveillance in development and disease. Trends Cell Biol 29:428–445. https://doi.org/10.1016/j.tcb.2019.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tharun S (2008) Chapter 4 Roles of eukaryotic Lsm proteins in the regulation of mRNA function. Int Rev Cell Mol Biol. https://doi.org/10.1016/S1937-6448(08)01604-3

    Article  Google Scholar 

  16. Kilchert C, Wittmann S, Vasiljeva L (2016) The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17:227–239. https://doi.org/10.1038/nrm.2015.15

    Article  CAS  PubMed  Google Scholar 

  17. Meyer KD, Jaffrey SR (2017) Rethinking m6A Readers, Writers, and Erasers. Annu Rev Cell Dev Biol 33:319–342. https://doi.org/10.1146/annurev-cellbio-100616-060758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Northcott PA, Dubuc AM, Pfister S, Taylor MD (2012) Molecular subgroups of medulloblastoma. Expert Rev Neurother 12:871–884. https://doi.org/10.1586/ern.12.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kool M, Jones DTW, Jäger N et al (2014) Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25:393–405. https://doi.org/10.1016/j.ccr.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng J (2012) Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol Lett 4:1151–1157. https://doi.org/10.3892/ol.2012.928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Dong C (2019) Gluconeogenesis in cancer: function and regulation of PEPCK, FBPase, and G6Pase. Trends Cancer 5:30–45. https://doi.org/10.1016/j.trecan.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  22. Grasmann G, Smolle E, Olschewski H, Leithner K (2019) Gluconeogenesis in cancer cells—repurposing of a starvation-induced metabolic pathway? Biochim Biophys Acta Rev Cancer 1872:24–36. https://doi.org/10.1016/j.bbcan.2019.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bott A, Maimouni S, Zong W-X (2019) The pleiotropic effects of glutamine metabolism in cancer. Cancers 11:770. https://doi.org/10.3390/cancers11060770

    Article  CAS  PubMed Central  Google Scholar 

  24. Zaidi N, Swinnen JV, Smans K (2012) ATP-Citrate lyase: a key player in cancer metabolism. Can Res 72:3709–3714. https://doi.org/10.1158/0008-5472.CAN-11-4112

    Article  CAS  Google Scholar 

  25. Moreno-Felici J, Hyroššová P, Aragó M et al (2019) Phosphoenolpyruvate from glycolysis and PEPCK regulate cancer cell fate by altering cytosolic Ca2+. Cells 9:18. https://doi.org/10.3390/cells9010018

    Article  CAS  PubMed Central  Google Scholar 

  26. Monteith GR, Prevarskaya N, Roberts-Thomson SJ (2017) The calcium—cancer signalling nexus. Nat Rev Cancer 17:373–380. https://doi.org/10.1038/nrc.2017.18

    Article  CAS  Google Scholar 

  27. Zhao J, Li J, Fan TWM, Hou SX (2017) Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells. Oncotarget 8:83602–83618. https://doi.org/10.18632/oncotarget.18787

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Uchhatar Avishkar Yojana (UAY-(MHRD), project #34_IITB (2016) to SS, and University Grants Commission fellowship to MKP. MASSFIITB (Mass Spectrometry Facility, IIT Bombay) supported by Department of Biotechnology (BT/PR13114/INF/22/206/2015) for MS-based proteomics work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MKP, NS, and SS designed the study. MKP performed the experiments. The data analysis was done by AK, MKP, and NS. DB performed the gene enrichment analysis and visualization. The surgery and pathology of the tumors were done by AM, PS, TG & ES.

Corresponding authors

Correspondence to Neelam Shirsat or Sanjeeva Srivastava.

Ethics declarations

Conflict of interest

The current study was approved by the Institute Ethics Committee of Tata Memorial hospital (Project number 197) and Indian Institute of Technology Bombay (Project number 018).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KP, M., Kumar, A., Biswas, D. et al. The proteomic analysis shows enrichment of RNA surveillance pathways in adult SHH and extensive metabolic reprogramming in Group 3 medulloblastomas. Brain Tumor Pathol 38, 96–108 (2021). https://doi.org/10.1007/s10014-020-00391-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-020-00391-x

Keywords

Navigation