Skip to main content
Log in

Pediatric brain tumor cell lines exhibit miRNA-depleted, Y RNA-enriched extracellular vesicles

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

Medulloblastoma (MB) and diffuse infiltrative pontine glioma (DIPG) are malignant pediatric tumors. Extracellular vesicles (EVs) and their bioactive cargoes have been implicated in tumorigenesis. Most studies have focused on adult tumors, therefore the role of EVs and the noncoding RNA (ncRNA) landscape in pediatric brain tumors is not fully characterized. The overall aim of this pilot study was to isolate EVs from MB and DIPG patient-derived cell lines and to explore the small ncRNA transcriptome.

Methods

EVs from 3 DIPG and 4 MB patient-derived cell lines were analyzed. High-throughput next generation sequencing interrogated the short non-coding RNA (ncRNA) transcriptome. Known and novel miRNAs were quantified. Differential expression analysis, in silico target prediction, and functional gene enrichment were performed.

Results

EV secretomes from MB and DIPG patient-derived cell lines demonstrated discrete ncRNA biotypes. Notably, miRNAs were depleted and Y RNAs were enriched in EV samples. Hierarchical cluster analysis revealed high discrimination in miRNA expression between DIPG and MB cell lines and RNA-Seq identified novel miRNAs not previously implicated in MB or DIPG pathogenesis. Known and putative target genes of dysregulated miRNAs were identified. Functional annotation analysis of the target genes for differentially expressed EV-and parental-derived miRNAs revealed significant cancer-related pathway involvement.

Conclusions

This hypothesis-generating study demonstrated that pediatric brain tumor-derived cell lines secrete EVs comprised of various ncRNA cargoes. Validation of these findings in patient samples may provide new insights into the pediatric brain tumor microenvironment and identification of novel therapeutic candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available upon request from the corresponding author.

Code availability

Not applicable.

References

  1. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20:iv1–iv86. https://doi.org/10.1093/neuonc/noy131

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lin T, Prados M (2017) Pediatric CNS tumors. Springer, Switzerland

    Google Scholar 

  3. Hovestadt V, Ayrault O, Swartling FJ, Robinson GW, Pfister SM, Northcott PA (2020) Medulloblastomics revisited: biological and clinical insights from thousands of patients. Nat Rev Cancer 20:42–56. https://doi.org/10.1038/s41568-019-0223-8

    Article  CAS  PubMed  Google Scholar 

  4. Joshi P, Katsushima K, Zhou R, Meoded A, Stapleton S, Jallo G, Raabe E, Eberhart CG, Perera RJ (2019) The therapeutic and diagnostic potential of regulatory noncoding RNAs in medulloblastoma. Neurooncol Adv 1:023. https://doi.org/10.1093/noajnl/vdz023

    Article  Google Scholar 

  5. Kebudi R, Cakir FB, Agaoglu FY, Gorgun O, Ayan I, Darendeliler E (2013) Pediatric diffuse intrinsic pontine glioma patients from a single center. Childs Nerv Syst 29:583–588. https://doi.org/10.1007/s00381-012-1986-3

    Article  PubMed  Google Scholar 

  6. Welby JP, Kaptzan T, Wohl A, Peterson TE, Raghunathan A, Brown DA, Gupta SK, Zhang L, Daniels DJ (2019) Current murine models and new developments in H3K27M diffuse midline gliomas. Front Oncol 9:92. https://doi.org/10.3389/fonc.2019.00092

    Article  PubMed  PubMed Central  Google Scholar 

  7. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. https://doi.org/10.1038/nrg3074

    Article  CAS  PubMed  Google Scholar 

  8. Godlewski J, Krichevsky AM, Johnson MD, Chiocca EA, Bronisz A (2015) Belonging to a network–microRNAs, extracellular vesicles, and the glioblastoma microenvironment. Neuro Oncol 17:652–662. https://doi.org/10.1093/neuonc/nou292

    Article  CAS  PubMed  Google Scholar 

  9. Nolte-’t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, ’t Hoen PA (2012) Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 40:9272–9285. https://doi.org/10.1093/nar/gks658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, Grau GE, Combes V, Bebawy M, Gong J, Brammah S, Buckland ME, Suter CM (2013) Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 10:1333–1344. https://doi.org/10.4161/rna.25281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei Z, Batagov AO, Schinelli S, Wang J, Wang Y, El Fatimy R, Rabinovsky R, Balaj L, Chen CC, Hochberg F, Carter B, Breakefield XO, Krichevsky AM (2017) Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun 8:1145. https://doi.org/10.1038/s41467-017-01196-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marbán L, Marbán E (2017) Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med 9:337–352. https://doi.org/10.15252/emmm.201606924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Epple LM, Griffiths SG, Dechkovskaia AM, Dusto NL, White J, Ouellette RJ, Anchordoquy TJ, Bemis LT, Graner MW (2012) Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS One 7:e42064. https://doi.org/10.1371/journal.pone.0042064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23:1541–1557. https://doi.org/10.1096/fj.08-122184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bisaro B, Mandili G, Poli A, Piolatto A, Papa V, Novelli F, Cenacchi G, Forni M, Zanini C (2015) Proteomic analysis of extracellular vesicles from medullospheres reveals a role for iron in the cancer progression of medulloblastoma. Mol Cell Ther 3:8. https://doi.org/10.1186/s40591-015-0045-3

    Article  PubMed  PubMed Central  Google Scholar 

  16. Himes BT, Peterson TE, de Mooij T, Garcia LMC, Jung MY, Uhm S, Yan D, Tyson J, Jin-Lee HJ, Parney D, Abukhadra Y, Gustafson MP, Dietz AB, Johnson AJ, Dong H, Maus RL, Markovic S, Lucien F, Parney IF (2020) The role of extracellular vesicles and PD-L1 in glioblastoma-mediated immunosuppressive monocyte induction. Neuro Oncol 22:967–978. https://doi.org/10.1093/neuonc/noaa029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cumba-Garcia LM, Peterson TE, Cepeda MA, Johnson AJ, Parney IF (2019) Isolation and analysis of plasma-derived exosomes in patients with glioma. Front Oncol 9:1–9

    Article  Google Scholar 

  18. de Mooij T, Peterson TE, Evans J, McCutcheon B, Parney IF (2020) Short non-coding RNA sequencing of glioblastoma extracellular vesicles. J Neurooncol 146:253–263. https://doi.org/10.1007/s11060-019-03384-9

    Article  CAS  PubMed  Google Scholar 

  19. Jang JS, Simon VA, Feddersen RM, Rakhshan F, Schultz DA, Zschunke MA, Lingle WL, Kolbert CP, Jen J (2011) Quantitative miRNA expression analysis using fluidigm microfluidics dynamic arrays. BMC Genomics 12:144. https://doi.org/10.1186/1471-2164-12-144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fujita Y, Yoshioka Y, Ochiya T (2016) Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci 107:385–390. https://doi.org/10.1111/cas.12896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS, Di Rocco C, Riccardi R, Giangaspero F, Farcomeni A, Nofroni I, Laneve P, Gioia U, Caffarelli E, Bozzoni I, Screpanti I, Gulino A (2009) MicroRNA profiling in human medulloblastoma. Int J Cancer 124:568–577. https://doi.org/10.1002/ijc.23948

    Article  CAS  PubMed  Google Scholar 

  22. Genovesi LA, Carter KW, Gottardo NG, Giles KM, Dallas PB (2011) Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with neural stem cells. PLoS One 6:e23935. https://doi.org/10.1371/journal.pone.0023935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dai J, Li Q, Bing Z, Zhang Y, Niu L, Yin H, Yuan G, Pan Y (2017) Comprehensive analysis of a microRNA expression profile in pediatric medulloblastoma. Mol Med Rep 15:4109–4115. https://doi.org/10.3892/mmr.2017.6490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shalaby T, Fiaschetti G, Baulande S, Gerber N, Baumgartner M, Grotzer M (2015) Detection and quantification of extracellular microRNAs in medulloblastom. J Cancer Metastasis Treat 1:67–75

    Article  CAS  Google Scholar 

  25. Wang X, Holgado BL, Ramaswamy V, Mack S, Zayne K, Remke M, Wu X, Garzia L, Daniels C, Kenney AM, Taylor MD (2018) miR miR on the wall, who’s the most malignant medulloblastoma miR of them all? Neuro Oncol 20:313–323. https://doi.org/10.1093/neuonc/nox106

    Article  CAS  PubMed  Google Scholar 

  26. Liu J, Lu KH, Liu ZL, Sun M, De W, Wang ZX (2012) MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1. BMC Cancer 12:519. https://doi.org/10.1186/1471-2407-12-519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haderk F, Schulz R, Iskar M, Cid LL, Worst T, Willmund KV, Schulz A, Warnken U, Seiler J, Benner A, Nessling M, Zenz T, Göbel M, Dürig J, Diederichs S, Paggetti J, Moussay E, Stilgenbauer S, Zapatka M, Lichter P, Seiffert M (2017) Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci Immunol. https://doi.org/10.1126/sciimmunol.aah5509

    Article  PubMed  Google Scholar 

  28. Schulte JH, Marschall T, Martin M, Rosenstiel P, Mestdagh P, Schlierf S, Thor T, Vandesompele J, Eggert A, Schreiber S, Rahmann S, Schramm A (2010) Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res 38:5919–5928. https://doi.org/10.1093/nar/gkq342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luan W, Qian Y, Ni X, Bu X, Xia Y, Wang J, Ruan H, Ma S, Xu B (2017) miR-204-5p acts as a tumor suppressor by targeting matrix metalloproteinases-9 and B-cell lymphoma-2 in malignant melanoma. Onco Targets Ther 10:1237–1246. https://doi.org/10.2147/OTT.S128819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, Bjerke L, Clarke M, Vinci M, Nandhabalan M, Temelso S, Popov S, Molinari V, Raman P, Waanders AJ, Han HJ, Gupta S, Marshall L, Zacharoulis S, Vaidya S, Mandeville HC, Bridges LR, Martin AJ, Al-Sarraj S, Chandler C, Ng HK, Li X, Mu K, Trabelsi S, Brahim DH, Kisljakov AN, Konovalov DM, Moore AS, Carcaboso AM, Sunol M, de Torres C, Cruz O, Mora J, Shats LI, Stavale JN, Bidinotto LT, Reis RM, Entz-Werle N, Farrell M, Cryan J, Crimmins D, Caird J, Pears J, Monje M, Debily MA, Castel D, Grill J, Hawkins C, Nikbakht H, Jabado N, Baker SJ, Pfister SM, Jones DTW, Fouladi M, von Bueren AO, Baudis M, Resnick A, Jones C (2017) Integrated molecular meta-analysis of 1000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32:520-537.e525. https://doi.org/10.1016/j.ccell.2017.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miele E, Buttarelli FR, Arcella A, Begalli F, Garg N, Silvano M, Po A, Baldi C, Carissimo G, Antonelli M, Spinelli GP, Capalbo C, Donofrio V, Morra I, Nozza P, Gulino A, Giangaspero F, Ferretti E (2014) High-throughput microRNA profiling of pediatric high-grade gliomas. Neuro-oncol 16:228–240. https://doi.org/10.1093/neuonc/not215

    Article  CAS  PubMed  Google Scholar 

  32. Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R, Foreman NK (2011) Survey of MicroRNA expression in pediatric brain tumors. Pediatr Blood Cancer 56:211–216. https://doi.org/10.1002/pbc.22723

    Article  PubMed  Google Scholar 

  33. Tűzesi Á, Kling T, Wenger A, Lunavat TR, Jang SC, Rydenhag B, Lötvall J, Pollard SM, Danielsson A, Carén H (2017) Pediatric brain tumor cells release exosomes with a miRNA repertoire that differs from exosomes secreted by normal cells. Oncotarget 8:90164–90175. https://doi.org/10.18632/oncotarget.21621

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hou BH, Jian ZX, Cui P, Li SJ, Tian RQ, Ou JR (2015) miR-216a may inhibit pancreatic tumor growth by targeting JAK2. FEBS Lett 589:2224–2232. https://doi.org/10.1016/j.febslet.2015.06.036

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez-L A, Squatrito M, Northcott P, Awan A, Holland EC, Taylor MD, Nahlé Z, Kenney AM (2012) Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene 31:1923–1937. https://doi.org/10.1038/onc.2011.379

    Article  CAS  PubMed  Google Scholar 

  36. Dey A, Robitaille M, Remke M, Maier C, Malhotra A, Gregorieff A, Wrana JL, Taylor MD, Angers S, Kenney AM (2016) YB-1 is elevated in medulloblastoma and drives proliferation in sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene 35:4256–4268. https://doi.org/10.1038/onc.2015.491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kowalski MP, Krude T (2015) Functional roles of non-coding Y RNAs. Int J Biochem Cell Biol 66:20–29. https://doi.org/10.1016/j.biocel.2015.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pomytkin I, Costa-Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch KP, Ponomarev ED, Strekalova T (2018) Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther. https://doi.org/10.1111/cns.12866

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Théry C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles 3:26913. https://doi.org/10.3402/jev.v3.26913

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Liang Zhang in Neurologic Surgery for providing DIPG samples, Dr. Michelle Monje for providing autopsy-derived DIPG-4 and DIPG-17 cell lines, Kim Klingsporn in Mayo Media Support Services for creating the manuscript figures and tables, and Lori Lynn Reinstrom for technical assistance with formatting and submission of the manuscript.

Funding

Mayo Clinic Center for Individualized Medicine.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: SMM, TEP, DJD, IFP. Collection and assembly of data: all authors. Data analysis and interpretation: all authors. Manuscript preparation and review, accountability for all aspects of the work: all authors.

Corresponding author

Correspondence to Ian F. Parney.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Our study was approved by our local institutional review board and patients provided written informed consent.

Consent for publication

All authors have reviewed the manuscript and consent to publication in the above Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 81879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magaña, S.M., Peterson, T.E., Evans, J.E. et al. Pediatric brain tumor cell lines exhibit miRNA-depleted, Y RNA-enriched extracellular vesicles. J Neurooncol 156, 269–279 (2022). https://doi.org/10.1007/s11060-021-03914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03914-4

Keywords

Navigation