Skip to main content
Log in

Square-wave voltammetry of two-step diffusional electrode mechanism coupled with a reversible follow-up chemical reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Square-wave voltammetry (SWV) is applied to simulate two-step diffusional electrode mechanism, in which the electrochemically active species generated in the second redox step are involved in a reversible follow-up chemical reaction. The model provides insight into relevant mechanistic and kinetic aspects of this complex mechanism. Alongside the scenario of separated SW voltammetric peaks for at least 150 mV (in absolute value), an attention is given to the case when both electron-transfer steps take place at the same formal potential. The last scenario enables development of a strategy to differentiate this complex mechanism relevant for multi-electron redox systems, revealing a profound effect of the follow-up chemical reaction on the voltammetric characteristics of the electron-transfer steps. The presented analysis might help for a rational benchmarking of hydrophilic redox systems that proceed as consecutive multi-electron transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saveant JM, Costent C (2019) in Elements of molecular and biomolecular electrochemistry: an electrochemical approach to electron-transfer chemistry. 2nd edition, John Willey&Sons.

  2. Armstrong FA (2015) Electrifying metalloenzymes in: Metalloproteins: Theory, calculations and experiments (A. E. Cho, W. A. Goddar III, eds), CRC Press, Taylor & Francis Group, London, New York USA.

  3. Bucher ES, Wightman RM (2015) Electrochemical analysis of neurotransmitters. Annu Rev Anal Chem 8:239–261

    Article  CAS  Google Scholar 

  4. Compton RG, Banks CE (2018) Understanding voltammetry, 2nd edn. World Scientific

    Book  Google Scholar 

  5. Mirceski V, Komorsky-Lovric S, Lovric M (2007) Square-wave voltammetry, theory and application (F. Scholz, ed.) Springer, Berlin, Germany

  6. Lovric M (2010) Square-wave voltammetry in electroanalytical methods (Scholz F, ed) Springer, Berlin, Germany, 2nd edition

  7. Leger C, Elliott SJ, Hoke KR, Jeuken LJC, Jones AK, Armstrong FA (2003) Enzyme electrokinetics: using protein-film voltammetry to investigate redox enzymes and their mechanism. Biochem 42:8653–8662

    Article  CAS  Google Scholar 

  8. Armstrong FA (2020) Voltammetry of proteins in: Encyclopaedia of electrochemistry (Bard AJ, Stratmann M, Wilson GS, eds), Wiley VCH, Weinheim

  9. Jenner LP, Butt JN (2018) Electrochemistry of surface-confined enzymes: inspiration, insight and opportunity for sustainable biotechnology. Curr Opin Eletrochem 8:81–88

    Article  CAS  Google Scholar 

  10. Armstrong FA, Heering HA, Hirst J (1997) Reactions of complex metalloproteins studied by protein-film voltammetry. Chem Soc Rev 26:169–179

    Article  CAS  Google Scholar 

  11. Fourmond V, Wiedner ES, Shaw WJ, Leger C (2019) Understanding and design of bidirectional and reversible catalysts of multielectron, multistep reactions. J Am Chem Soc 141:11269–11285

    Article  CAS  Google Scholar 

  12. Gulaboski R, Mirceski V, Bogeski I, Hoth M (2012) Protein-film voltammetry-electrochemical enzymatic spectroscopy: a review on recent progress. J Solid State Electrochem 16:315–2328

    Article  Google Scholar 

  13. Mirceski V, Gulaboski R, Lovric M, Bogeski I, Kappl R, Hoth M (2013) Square-wave voltammetry: a review on recent progress. Electroanalysis 25:2411–2422

    Article  CAS  Google Scholar 

  14. Gulaboski R, Mirceski V (2020) Application of voltammetry in biomedicine–recent achievements in enzymatic voltammetry. Maced J Chem Chem Eng 39:153–166

    Article  Google Scholar 

  15. Janeva M, Kokoskarova P, Gulaboski R (2020) Multistep surface electrode mechanism coupled with preceding chemical reaction — theoretical analysis in square-wave voltammetry. Anal & Bioanal Electrochem 12:766–779

    Google Scholar 

  16. Gulaboski R (2009) Surface ECE mechanism in protein-film voltammetry—a theoretical study under conditions of square-wave voltammetry. J Solid State Electrochem 13:1015–1024

    Article  CAS  Google Scholar 

  17. Janeva M, Kokoskarova P, Maksimova V, Gulaboski R (2019) Square-wave voltammetry of two-step surface redox mechanisms coupled with chemical reactions - a theoretical overview. Electroanalysis 31:2488–2506

    Article  CAS  Google Scholar 

  18. Gulaboski R, Mihajlov L (2011) Catalytic mechanism in successive two-step protein-film voltammetry — theoretical study in square-wave voltammetry. Biophys Chem 155:1–9

    Article  CAS  Google Scholar 

  19. Laborda E, Henstdridge MC, Molina A, Martinez-Ortiz F, Compton RG (2011) A comparison of Marcus-Hush vs. Butler-Volmer electrode kinetics using potential pulse voltammetric techniques. J Electroanal Chem 660:169–177

    Article  CAS  Google Scholar 

  20. Ryan MD (1978) The effect of slow two-electron transfers and disproportionation on cyclic voltammograms. J Electrochem Soc 125:547–555

    Article  CAS  Google Scholar 

  21. Olmstead ML, Hamilton RG, Nicholson RS (1969) Theory of cyclic voltammetry for a dimerization reaction initiated electrochemically. Anal Chem 41:60–267

    Google Scholar 

  22. Lovric M, Komorsky-Lovric S (2011) Theory of square-wave voltammetry of two-step electrode reaction using an inverse scan direction. Int J Electrochem. https://doi.org/10.4061/2011/538341

    Article  Google Scholar 

  23. Quan M, Sanchez D, Wasylkiw MF, Smith DK (2007) Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. J Am Chem Soc 129:12847–12856

    Article  CAS  Google Scholar 

  24. Evans DH, Hu K (1996) Inverted potentials in two-electron processes in organic electrochemistry. J Chem Soc Farad Trans 92:3983–3990

    Article  CAS  Google Scholar 

  25. Macias-Ruvalcaba NA, Evans DH (2006) Studies of potential inversion in the electrochemical reduction of 11,11,12,12-tetracyano-9,10-anthraquinodimethane and 2,3,5,6-tetramethyl-7,7,8,8-tetracyano-1,4-benzoquinodimethane. J Phys Chem B 110:5155–5160

    Article  CAS  Google Scholar 

  26. Amatore C, Gazard S, Maisonhaute E, Pebay C, Schöllhor B, Syssa-Magalé JL, Wadhawan J (2007) Ferrocenyloligo(phenylene‐vinylene) thiols for the construction of self‐assembled monolayers. EurJ Inor Chem 4035–4042 https://doi.org/10.1002/ejic.200700266

  27. Sies H, Parker L (2004) Quinones and quinone enzymes, In: Methods in enzymology. Academic Press, London UK.

  28. Mirceski V, Laborda E, Guziejewski D, Compton RG (2013) New approach to electrode kinetic measurements in square-wave voltammetry: amplitude based quasireversible maximum. Anal Chem 85:5586–5594

    Article  CAS  Google Scholar 

  29. Guziejewski D (2020) Electrode mechanisms with coupled chemical reactions-amplitude effect in square-wave voltammetry. J Electroanal Chem 870:114186.

  30. Molina A, Serna C, Li Q, Laborda E, Batchelor-McAuley C, Compton RG (2012) Analytical solutions for the study of multi-electron-transfer processes by staircase, cyclic, and differential voltammetries at disc microelectrodes. J Phys Chem C116:11470–11479

    Google Scholar 

  31. Lopez-Tenes M, Gonzalez J, Molina A (2014) Two-electron transfer reactions in electrochemistry for solution-soluble and surface-confined molecules: a common approach. J Phys Chem C 118:12312–12324

    Article  CAS  Google Scholar 

  32. Batchelor-McAuley C, Compton RG (2012) Voltammetry of multi-electron electrode processes of organic species. J Electroanal Chem 669:73–81

    Article  CAS  Google Scholar 

  33. Gulaboski R, Mirceski V, Lovric M (2021) Critical aspects in exploring time analysis for the voltammetric estimation of kinetic parameters of surface electrode mechanisms coupled with chemical reaction. Maced J Chem Chem Eng 40:1–9

    Article  Google Scholar 

  34. Mirceski V, Guziejewski D, Lisickov K (2013) Electrode kinetic measurements with square-wave voltammetry at a constant scan rate. Electrochim Acta 114:667–673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rubin Gulaboski thanks the Alexander von Humboldt Foundation (Germany) for the support. Valentin Mirceski acknowledges with gratitude the support through the NATO Grant No. SPS G5550.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubin Gulaboski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We dedicate this work on the occasion of 75th birthday of professor Gyorgy Inzelt

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 97 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulaboski, R., Mirceski, V. Square-wave voltammetry of two-step diffusional electrode mechanism coupled with a reversible follow-up chemical reaction. J Solid State Electrochem 25, 2893–2901 (2021). https://doi.org/10.1007/s10008-021-05027-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05027-4

Keywords

Navigation