Skip to main content
Log in

Interfacial kinetics and low-temperature behavior of spheroidized natural graphite particles as anode for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Fast-charge and low-temperature performance is a key requirement for Li-ion battery applications such as automotive. The kinetics of Li+ intercalation into graphite anode is one of the main limiting factors for charging the cell at relatively low temperatures or high current densities. Spherical graphite particles are generally obtained by mechanical milling process and have several advantages for anode fabrication. In this study, we show that the milling conditions applied for spheroidization of natural graphite have a significant influence on the Li+ intercalation rate, and affect the kinetics of the charge-transfer reaction as revealed by electrochemical impedance spectroscopy analysis. The surface physical and chemical properties of the graphite particles after mechanical shaping mostly determine the rate of the lithiation reaction. Graphite particles with large amount of prismatic and defect-rich surfaces are associated with faster Li+ intercalation, and thus suitable for designing natural graphite particle as active material with promising capacity at low-temperature and high-charging rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Writer B (2019) Lithium-ion batteries a machine-generated summary of current research. Springer, Heidelberg

    Book  Google Scholar 

  2. Xie J, Lu YC (2020) Nat Commun 11(1):2499

    Article  CAS  Google Scholar 

  3. Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D (2020) Sustainable Energy Fuels 4(11):5387–5416

    Article  CAS  Google Scholar 

  4. Moradi B, Botte GG (2016) J Appl Electrochem 46(2):123–148

    Article  CAS  Google Scholar 

  5. Wu X, Song K, Zhang X, Hu N, Li L, Li W, Zhang L, Zhang H (2019) Front Energy Res 7:65

    Article  Google Scholar 

  6. Joho F, Novák P, Spahr ME (2002) J Electrochem Soc 149(8):A1020–A1024

    Article  CAS  Google Scholar 

  7. Cai W, Yao YX, Zhu GL, Yan C, Jiang LL, He C, Huang JQ, Zhang Q (2020) Chem Soc Rev 49(12):3806–3833

    Article  CAS  Google Scholar 

  8. Yang XG, Zhang G, Ge S, Wang CY (2018) Proc Natl Acad Sci U S A 115(28):7266–7271

    Article  CAS  Google Scholar 

  9. Sebastian SS, Dong B, Zerrin T, Pena PA, Akhavi AS, Li Y, Ozkan CS, Ozkan M (2020) Energy Storage 2:141

    Article  Google Scholar 

  10. Ma S, Jiang M, Tao P, Song C, Wu J, Wang J, Deng T, Shang W (2018) Prog Nat Sci: Mater Int 28(6):653–666

    Article  CAS  Google Scholar 

  11. Gupta A, Manthiram A (2020) Adv Energy Mater 10(38):2001972

    Article  CAS  Google Scholar 

  12. Goodenough JB, Kim Y (2010) Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  13. Zhang SS (2019) InfoMat 2:942–949

    Article  Google Scholar 

  14. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL III (2016) Carbon 105:52–76

    Article  CAS  Google Scholar 

  15. Liu Q, Du C, Shen B, Zuo P, Cheng X, Ma Y, Yin G, Gao Y (2016) RSC Adv 6(91):88683–88700

    Article  CAS  Google Scholar 

  16. Tomaszewska A, Chu Z, Feng X, O’Kane S, Liu X, Chen J, Ji C, Endler E, Li R, Liu L, Li Y, Zheng S, Vetterlein S, Gao M, Du J, Parkes M, Ouyang M, Marinescu M, Offer G, Wu B (2019) eTransportation 1:100011

    Article  Google Scholar 

  17. Ogumi Z, Wang H (2009) Carbon anode materials. In: Yoshio M, Brodd RJ, Kozawa A (eds) Lithium-ion batteries science and technology. Springer, New York, pp 49–73

    Google Scholar 

  18. Armand M, Axmann P, Bresser D, Copley M, Edström K, Ekberg C, Guyomard D, Lestriez B, Novák P, Petranikova M, Porcher W, Trabesinger S, Wohlfahrt-Mehrens M, Zhang H (2020) J Power Sources 479:228708

    Article  CAS  Google Scholar 

  19. Peled E, Menkin S (2017) J Electrochem Soc 164(7):A1703–A1719

    Article  CAS  Google Scholar 

  20. Tsubouchi S, Domi Y, Doi T, Ochida M, Nakagawa H, Yamanaka T, Abe T, Ogumi Z (2012) J Electrochem Soc 159(11):A1786–A1790

    Article  CAS  Google Scholar 

  21. Mundszinger M, Farsi S, Rapp M, Golla-Schindler U, Kaiser U, Wachtler M (2017) Carbon 111:764–773

    Article  CAS  Google Scholar 

  22. Heß M, Novák P (2013) Electrochim Acta 106:149–158

    Article  Google Scholar 

  23. Marinaro M, Mancini M, Nobili F, Tossici R, Damen L, Marassi R (2013) J Power Sources 222:66–71

    Article  CAS  Google Scholar 

  24. Abe T, Mizutani Y, Tabuchi T, Ikeda K, Asano M, Harada T, Inaba M, Ogumi Z (1997) J Power Sources 68(2):216–220

    Article  CAS  Google Scholar 

  25. Sole C, Drewett NE, Hardwick LJ (2014) Faraday Discuss 172:223–237

    Article  CAS  Google Scholar 

  26. Dinkelacker F, Marzak P, Yun J, Liang Y, Bandarenka AS (2018) ACS Appl Mater Interfaces 10(16):14063–14069

    Article  CAS  Google Scholar 

  27. Abe T, Fukuda H, Iriyama Y, Ogumi Z (2004) J Electrochem Soc 151(8):A1120–A1123

    Article  CAS  Google Scholar 

  28. Abe T, Sagane F, Ohtsuka M, Iriyama Y, Ogumi Z (2005) J Electrochem Soc 152(11):A2151–A2154

    Article  Google Scholar 

  29. Jow TR, Delp SA, Allen JL, Jones JP, Smart MC (2018) J Electrochem Soc 165(2):A361–A367

    Article  CAS  Google Scholar 

  30. Xu K (2007) J Electrochem Soc 154(3):A162–A167

    Article  CAS  Google Scholar 

  31. Xu K, Cresce A, Lee U (2010) Langmuir 26(13):11538–11543

    Article  CAS  Google Scholar 

  32. Yamada Y, Iriyama Y, Abe T, Ogumi Z (2009) Langmuir 25(21):12766–12770

    Article  CAS  Google Scholar 

  33. Huang H, Kelder EM, Schoonman J (2001) J Power Sources 97:114–117

    Article  Google Scholar 

  34. Nobili F, Mancini M, Stallworth PE, Croce F, Greenbaum SG, Marassi R (2012) J Power Sources 198:243–250

    Article  CAS  Google Scholar 

  35. Nobili F, Mancini M, Dsoke S, Tossici R, Marassi R (2010) J Power Sources 195(20):7090–7097

    Article  CAS  Google Scholar 

  36. Mancini M, Nobili F, Dsoke S, D’ Amico F, Tossici R, Croce F, Marassi R (2009) J Power Sources 190(1):141–148

    Article  CAS  Google Scholar 

  37. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy theory, experiment, and applications. John Wiley & Sons, Hoboken, New Jersey

    Book  Google Scholar 

  38. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. John Wiley & Sons, Hoboken, New Jersey

    Book  Google Scholar 

  39. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, New York

    Book  Google Scholar 

  40. Lvovich VF (2012) Impedance spectroscopy applications to electrochemical and dielectric phenomena. John Wiley & Sons, Hoboken, New Jersey

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. C. Pfeifer (ZSW) for the SEM images and Graphit Kropfmühl GmbH for providing the graphite raw materials.

Funding

We also acknowledge the BMBF (Federal Ministry of Education and Research, Germany) for funding project “RONDO,” grant number 03XP0112E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilena Mancini.

Additional information

This work is dedicated to Prof. Roberto Marassi with thankfulness. He taught us, with his example and devotion, how to be strong and what it really means to love his job in research.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, I., Martin, J., Wohlfahrt-Mehrens, M. et al. Interfacial kinetics and low-temperature behavior of spheroidized natural graphite particles as anode for Li-ion batteries. J Solid State Electrochem 26, 73–83 (2022). https://doi.org/10.1007/s10008-021-04974-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04974-2

Keywords

Navigation