Skip to main content

Advertisement

Log in

Optimization and characterization of a biosensor assembly for detection of Salmonella Typhimurium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The performance of biosensors depends directly on the strategies adopted during their development. In this paper, a fast and sensitive biosensor for Salmonella Typhimurium detection was assembled by using optimization studies in separate stages. The pre-treatment assays, biomolecular immobilization (primary antibody and protein A concentrations), and analytical response (hydroquinone and hydrogen peroxide concentrations) were optimized via voltammetric methods. In the biosensor assembly, a gold surface was modified via the self-assembled monolayer technique (SAM) using cysteamine thiol and protein A for immobilization of anti-Salmonella antibody. The analytical response of the biosensor was obtained through the use of a secondary antibody labeled with a peroxidase enzyme, and the signal was evaluated by applying the chronoamperometry technique. The biosensor was characterized by infrared spectroscopy and cyclic voltammetry. Optimization of protein A and primary antibody concentrations enabled higher analytical signals of 7.5 and 75 mg mL−1, respectively, to be achieved. The hydroquinone and H2O2 concentrations selected were 3 and 300 mM, respectively. The biosensor developed attained a very low detection limit of 10 CFU mL−1 and a fast response with a final detection time of 125 min. These results indicate that this biosensor is very promising for the food safety and emergency response applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Centers for disease control and prevention - CDC (2012) Pathogens causing US foodborne illnesses, hospitalizations, and deaths, 2000–2008 https://www.cdc.gov/foodborneburden/PDFs/pathogens-complete-list-01-12.pdf. Accessed 10 Apr 2017

  2. Andrews WH, Wang H, Jacobson A, Hammack TS (2016) Salmonella. In: FOOD AND DRUG ADMINISTRATION. Bacteriological analytical manual (BAM) on line. Chap. 5. https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm070149.htm>. Accessed 12 Apr 2017

  3. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  CAS  Google Scholar 

  4. Gil ES, Melo GR (2010) Electrochemical biosensors in pharmaceutical analysis. Braz J Pharm Sci 46:375–381

    Article  CAS  Google Scholar 

  5. Arora P, Sindhu A, Kaur H, Dilbaghi N, Chaudhury A (2013) An overview of transducers as platform for the rapid detection of foodborne pathogens. Appl Microbiol Biotechnol 97:1829–1836

    Article  CAS  Google Scholar 

  6. Wang Y, Duncan TV (2017) Nanoscale sensors for assuring the safety of food products. Curr Opin Biotechnol 44:74–86

    Article  CAS  Google Scholar 

  7. Kokkinos C, Economou A, Prodromidis MI (2016) Electrochemical immunosensors: critical survey of different architectures and transduction strategies. Trac Trends Anal Chem 79:88–105

    Article  CAS  Google Scholar 

  8. Skladal P (1997) Advances in electrochemical immunosensors. Electroanalysis 9(10):737–745

    Article  CAS  Google Scholar 

  9. Skladal P, Kovar D, Krajicek V, Siskova P, Pribyl J, Svabenska E (2013) Electrochemical immunosensors for detection of microorganisms. Int J Electrochem Sci 8(2):1635–1649

    CAS  Google Scholar 

  10. Ricci F, Adornetto G, Palleschi G (2012) A review of experimental aspects of electrochemical immunosensors. Electrochim Acta 84:74–83

    Article  CAS  Google Scholar 

  11. Carvalhal RF, Kubota LT, Freire RS (2005) Polycrystalline gold electrodes: a comparative study of pretreatment procedures used for cleaning and thiol self-assembly monolayer formation. Electroanalysis 17(14):1251–1259

    Article  CAS  Google Scholar 

  12. Pimenta-Martins MGR, Furtado RF, Heneine LGD, Dias RS, Borges MD, Alves CR (2012) Development of an amperometric immunosensor for detection of staphylococcal enterotoxin type a in cheese. J Microbiol Methods 91:138–143

    Article  CAS  Google Scholar 

  13. Salam F, Tothill IE (2009) Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosens Bioelectron 24(8):2630–2636

    Article  CAS  Google Scholar 

  14. Babacan S, Pivarnik P, Letcher S, Rand AG (2000) Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens Bioelectron 15(11–12):615–621

    Article  CAS  Google Scholar 

  15. Danczyk R, Krieder B, North A, Webster T, HogenEsch H, Rundell A (2003) Comparison of antibody functionality using different immobilization methods. Biotechnol Bioeng 84(2):215–223

    Article  CAS  Google Scholar 

  16. Cheng C, Peng Y, Bai J, Zhang X, Liub Y, Fan X, Ning B, Gao Z (2014) Rapid detection of listeria monocytogenes in milk by self-assembled electrochemical immunosensor. Sensors Actuators B 190:900–906

    Article  CAS  Google Scholar 

  17. Luczak T, Osinska M (2017) New self-assembled layers composed with gold nanoparticles, cysteamine and dihydrolipoic acid deposited on bare gold template for highly sensitive and selective simultaneous sensing of dopamine in the presence of interfering ascorbic and uric acids. J Solid State Electrochem 21(3):747–758

    Article  CAS  Google Scholar 

  18. Yang Z, Gonzalez-Cortes A, Jourquin G, Viré J-C, Kauffmann J-M, Delplancke J-L (1995) Analytical application of self-assembled monolayers on gold electrodes: critical importance of surface pretreatment. Biosens Bioelectron 10(9):789–795

    Article  CAS  Google Scholar 

  19. Sun X, Zhu Y, Wang XY (2011) Amperometric Immunosensor based on a protein a/deposited gold nanocrystals modified electrode for Carbofuran detection. Sensors 11(12):11679–11691

    Article  CAS  Google Scholar 

  20. Salmain M, Ghasemi M, Boujday S, Pradier CM (2012) Elaboration of a reusable immunosensor for the detection of staphylococcal enterotoxin a ( SEA) in milk with a quartz crystal microbalance. Sensors Actuators B Chem 173:148–156

    Article  CAS  Google Scholar 

  21. Derkus B, Emregul K, Mazi H, Emregul E, Yumak T, Sinag A (2014) Protein a immunosensor for the detection of immunoglobulin G by impedance spectroscopy. Bioprocess Biosyst Eng 37(5):965–976

    Article  CAS  Google Scholar 

  22. Skottrup PD, Nicolaisen M, Justesen AF (2008) Towards on- site pathogen detection using antibody- based sensors. Biosens Bioelectron 24(3):339–348

    Article  CAS  Google Scholar 

  23. Green AA, Hughs WL (1955) Methods in enzymology, vol v. 1. Academic Press, New York

    Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  25. Avrameas S (1969) Coupling of enzymes to proteins with glutaraldehyde: Use of the conjugates for the detection of antigens and antibodies. Immunochemistry 6:43–52

    Article  CAS  Google Scholar 

  26. Susmel S, Sullivan CK, Guilbault GG (2000) Human cytomegalovirus detection by a quartz crystal microbalance immunosensor. Enzym Microb Technol 27(9):639–645

    Article  CAS  Google Scholar 

  27. Tlili A, Abdelghani A, Hleli S, Maaref MA (2004) Electrical characterization of a thiol SAM on gold as a first step for the fabrication of immunosensors based on a quartz crystal microbalance. Sensors 4(6–7):105–114

    Article  CAS  Google Scholar 

  28. Dijksma M, Boukamp BA, Kamp B, van Bennekom WP (2002) Effect of hexacyanoferrate(ii/iii) on self-assembled monolayers of thioctic acid and 11-mercaptoundecanoic acid on gold. Langmuir 18:3105–3112

    Article  CAS  Google Scholar 

  29. Jung C, Dannenberger O, Xu Y, Buck M, Grunze M (1998) Self-assembled monolayers from organosulfur compounds: a comparison between sulfides, disulfides, and thiols. Langmuir 14:1103–1107

    Article  CAS  Google Scholar 

  30. Leopold MC, Bowden EF (2002) Influence of gold substrate topography on the voltammetry of cytochrome c adsorbed on carboxylic acid terminated self-assembled monolayers. Langmuir 18:2239–2245

    Article  CAS  Google Scholar 

  31. Mantzila AG, Maipa V, Prodromidis MI (2008) Development of a faradic impedimetric immunosensor for the detection of Salmonella typhimurium in milk. Anal Chem 80(4):1169

    Article  CAS  Google Scholar 

  32. Droz E, Taborelli M, Descouts P, Wells TNC, Werlen RC (1996) Covalent immobilization of immunoglobulins G and fab’ fragments on gold substates for scanning force microscopy imaging in liquids. J Vac Sci Technol B 14:1422–1426

    Article  CAS  Google Scholar 

  33. Björk I, Petersson B, Sjöquist J (1972) Some physicochemical properties of protein a from Staphylococcus Aureus. Eur J Biochem 29(3):579–584

    Article  Google Scholar 

  34. Gopinath SCB, Tang TH, Citartan M, Chen Y, Lakshmipriya T (2014) Current aspects in immunosensors. Biosens Bioelectron 57:292–302

    Article  CAS  Google Scholar 

  35. Furtado RF, Alves CR, Moreira ACO, Azevedo RM, Dutra RF (2012) A novel xyloglucan film-based biosensor for toxicity assessment of ricin in castor seed meal. Carbohydr Polym 89:586–591

    Article  CAS  Google Scholar 

  36. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767:1073–1101

    Article  CAS  Google Scholar 

  37. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  CAS  Google Scholar 

  38. Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 20:1113–1126

    Article  CAS  Google Scholar 

  39. Rosatto SS, Freire RS, Durán N, Kubota LT (2001) Amperometric biosensors for phenolic compounds determination in the environmental interess samples. Química Nova 24:77–86

    Article  CAS  Google Scholar 

  40. Lei C-X, Hu S-Q, Gao N, Shen G-L, Yu R-Q (2004) An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-au monolayer supported by sol–gel derived carbon ceramic electrode. Bioelectrochemistry 65:33–39

    Article  CAS  Google Scholar 

  41. Oh B, Kim Y, Park K, Lee W, Choi JW (2004) Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens Bioelectron 19(11):1497–1504

    Article  CAS  Google Scholar 

  42. Oh BK, Lee W, Lee WH, Choi JW, Kim YK (2004) Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. J Biotechnol 111:1–8

    Article  CAS  Google Scholar 

  43. Bae Y, Park K, Oh B, Lee W, Choi JW (2005) Immunosensor for detection of Salmonella typhimurium based on imaging ellipsometry. Colloids Surf A Physicochem Eng Asp 257:19–23

    Article  Google Scholar 

  44. O’Shannessy DJ, Brigham-Burke M, Peck K (1992) Immobilization chemistries suitable for use in the BlAcore surface Plasmon resonance detector. Anal Biochem 205:132–136

    Article  Google Scholar 

  45. Barie N, Rapp M (2001) Covalent bound sensing layers on surface acoustic wave (SAW) biosensors. Biosens Bioelectron 16:979–987

    Article  CAS  Google Scholar 

  46. Lee KM, Runyon M, Herrman TJ, Hsieh J, Phillips R (2015) Review of Salmonella detection and identification methods: aspects of rapid emergency response and food safety. Food Control 47:264–276

    Article  Google Scholar 

  47. Knirel YA, Kocharova NA, Bystrova OV, Katzenellenbogen E, Gamian A (2002) Structures and serology of the O-specific polysaccharides of bacteria of the genus Citrobacter. Arch Immunol Ther Exp 50(6):379–391

    CAS  Google Scholar 

  48. Péterfi Z, Kustos I, Kilár F, Kocsis B (2007) Microfluidic chip analysis of outer membrane proteins responsible for serological cross-reaction between three gram-negative bacteria: Proteus Morganii O34, Escherichia Coli O111 and Salmonella Adelaide O35. J Chromatogr A 1155(1):214–217

    Article  Google Scholar 

  49. Kim YS, Raston NHA, Gu MB (2016) Aptamer-based nanobiosensors. Biosens Bioeletron 76:2–19

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian agencies, CNPq, FUNCAP, and CAPES, for their financial support, Embrapa Tropical Agroindustry and National Center of Energy and Materials Research (CNPEM). Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. A. Melo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, A.M.A., Alexandre, D.L., Oliveira, M.R.F. et al. Optimization and characterization of a biosensor assembly for detection of Salmonella Typhimurium. J Solid State Electrochem 22, 1321–1330 (2018). https://doi.org/10.1007/s10008-017-3767-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3767-0

Keywords

Navigation