Skip to main content
Log in

Theoretical study on polynitro imidazo [4, 5-e] oxadiazolo [3, 4-b] pyrazine compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The B3PW91/6-31G** theoretical method was carried out to optimize the structure of 12 polynitro imidazo [4,5-e] oxadiazolo [3,4-b] pyrazine compounds (two structural type). The influence of nitro groups on the structure, oxygen balance, density, heat of formation, detonation performances, and charge were investigated. The results showed that the oxygen balance, density, heat of formation, detonation velocity, detonation pressure, and detonation heat increased with different relationships when the number of nitro groups increased. The contribution of the dinitroethylene group to energy was greater than that of the nitroimino group. On the whole, the sensitivity of all compounds increased with the number of -NO2 groups, and the second type of compound is more sensitive because of more nitro groups. The alkaline of the amine will decrease with the increasing number of -NO2 groups, and nitrification action will become more difficult.

Polynitro imidazo [4, 5-e] oxadiazolo [3, 4-b] pyrazine compoundsᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2012) J Mater Chem 22:20418

    Article  CAS  Google Scholar 

  2. Dippold AA, Klapötke TM (2013) J Am Chem Soc 135:9931

    Article  CAS  Google Scholar 

  3. Lin Q-H, Li Y-C, Qi C, Liu W, Wang Y, Pang S-P (2013) J Mater Chem A 1:6776

    Article  CAS  Google Scholar 

  4. Feng L-L, Cao D-L, Wang J-L, Liu P-H, Zhang N (2015) Chin J Energ Mater 23(4):376

    Google Scholar 

  5. Lu M-J (2000) Chin J Explos Propellants 23(1):23

    CAS  Google Scholar 

  6. Peng Z-J, Wan D-Z (1980) Acta Armamentarii 3:23

    Google Scholar 

  7. Willer RL, Moore DW (1985) J Org Chem 50(25):5123

    Article  CAS  Google Scholar 

  8. Liu Y-Z, Yu Z-Y, Yu J-Y (2008) Chin J Energ Mater 16(3):356

    Google Scholar 

  9. Tselinskii IV, Mel'nikova SF, Romanova TV (1997) Russ J Org Chem 33(11):1656

    CAS  Google Scholar 

  10. Huo H, Wang B-Z, Lian P, Lai W-P, Li H, Ge Z-X (2014) Chin J Energ Mater 22(2):274

    CAS  Google Scholar 

  11. Yu Z-Y, Chen B-H, Yu J-Y, Li W-J (2004) Chin J Energ Mater 12(1):34

    CAS  Google Scholar 

  12. Liang R, Yu Z-Y, Jiao G-L, Yu J-Y (2006) Chin J Energ Mater 14(4):262

    CAS  Google Scholar 

  13. Wilier RL (1983) Propellants Explos Pyrotechnics 8:65

    Article  Google Scholar 

  14. Dagley IJ, Flippenanderson JL (1994) Aust J Chem 47(11):2033

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc, Wallingford

    Google Scholar 

  16. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095

    Article  CAS  Google Scholar 

  17. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2007) J Hazard Mater 141:280

    Article  CAS  Google Scholar 

  18. Rice BM, Hare JJ, Byrd EFC (2007) J Phys Chem A 111:10874

    Article  CAS  Google Scholar 

  19. Atkins PW (1982) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  20. Politzer P, Ma YG, Lane P, Concha MC (2005) Inter J Quantum Chem 105:341

    Article  CAS  Google Scholar 

  21. Politzer P, Murray JS, Grice ME, Desalvo M, Edward M (1997) Mol Phys 91:923

    Article  CAS  Google Scholar 

  22. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23

    Article  CAS  Google Scholar 

  23. Wu X (1986) Proceedings of the 8th symposium (international) on detonation, Albuquerque, pp 796–804

  24. Mader CL (1987) Technical report ISPBKW. Mader Consulting Co., Honolulu

  25. Politzer P, Murray JS (2016) Propellants Explos Pyrotechnics 41:414

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 21503160 and 21403162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Peng Lai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, P., Chen, S., Zhang, Yx. et al. Theoretical study on polynitro imidazo [4, 5-e] oxadiazolo [3, 4-b] pyrazine compounds. J Mol Model 25, 25 (2019). https://doi.org/10.1007/s00894-018-3903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3903-5

Keywords

Navigation