Skip to main content
Log in

Comparative density functional theory based study of the reactivity of Cu, Ag, and Au nanoparticles and of (111) surfaces toward CO oxidation and NO2 reduction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The reactivity of Cu, Ag, and Au nanoparticles and of the corresponding (111) surfaces of these elements toward CO oxidation and NO2 reduction has been investigated by means of DFT and DFT-D calculations. The co-adsorption energies of CO and O on Ag and Au surfaces are smaller than that corresponding to Cu surface but the oxidation reaction is energetically more favored for the heavier metals. The adsorption energy of NO2, Eads, is about 50 % larger on nanoparticles than on the metal perfect surfaces, following the almost general rule stating that the lower coordinated sites are those where the interaction is the largest. Interestingly for the co-adsorption and oxidation of CO an increase of reactivity is found for the Au nanoparticles, which is attributed to the large number of low coordinated sites due to the specific shape of this nanoparticle induced by the adsorbates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haruta M (1997) Size- and support- dependency in the catalysis of gold. Cat Today 36:153–166

    Article  CAS  Google Scholar 

  2. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  Google Scholar 

  3. Wallace WT, Whetten RL (2002) Coadsorption of CO and O2on selected gold clusters: evidence for efficient room-temperature CO2 generation. J Am Chem Soc 124:7499–7505

    Article  CAS  Google Scholar 

  4. Sanchez A, Abbet S, Heiz U, Schneider W-D, Hakkinen H, Barnett RN, Landman U (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573–9578

    Article  CAS  Google Scholar 

  5. Iizuka Y, Tode T, Takao T, Yatsu K, Takeuchi T, Tsubota S, Haruta M (1999) A kinetic and adsorption study of CO oxidation over unsupported fine gold powder. J Catal 187:50–58

    Article  CAS  Google Scholar 

  6. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Nanoclusters on iron oxide supports for CO oxidation. Science 321:1331–1335

    Article  CAS  Google Scholar 

  7. Rodriguez JA, Illas F (2012) Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions. PhysChemChemPhys 14:427–438

    CAS  Google Scholar 

  8. Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) CO2 hydrogenation on Au/TiC, Cu/TiC and Ni/TiC catalysts: production of CO, methanol and methane. J Catal 307:162–169

    Article  CAS  Google Scholar 

  9. Valden M, Pak S, Lai X, Goodman DW (1998) Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Cat Lett 56:7–10

    Article  CAS  Google Scholar 

  10. Hvolbæk B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nanoparticles. NanoToday 2(4):14–18

    Article  Google Scholar 

  11. Roldán A, González S, Ricart JM, Illas F (2009) Critical Size for O2 dissociation by Au nanoparticles. ChemPhysChem 10:348–351

    Article  Google Scholar 

  12. Roldán A, Ricart JM, Illas F (2009) Influence of the exchange-correlation potential on the description of the molecular mechanism of oxygen dissociation by Au nanoparticles. Theor Chem Acc 123:119

    Article  Google Scholar 

  13. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983

    Article  CAS  Google Scholar 

  14. Gajdoš M, Hafner J, Eichler A (2006) Ab initio density-functional study of NO on close-packed transition and noble metal surfaces: I. Molecular adsorption. J Phys Condens Matter 18:13–40

    Article  Google Scholar 

  15. Gajdoš M, Hafner J, Eichler A (2006) Ab initio density-functional study of NO adsorption on close-packed transition and noble metal surfaces: II. Dissociative adsorption. J Phys Condens Matter 18:41–54

    Article  Google Scholar 

  16. Torres D, González S, Neyman KM, Illas F (2006) Adsorption and oxidation of NO on Au(111) surface: density functional studies. Chem Phys Lett 422:412–416

    Article  CAS  Google Scholar 

  17. Lemire C, Meyer R, Shaikhutdinov S, Freund H-J (2004) Do quantum size effects control CO adsorption on gold nanoparticles? Angew Chem Int Ed 43:118–121

    Article  Google Scholar 

  18. Ovesson S, Lundqvist BI, Schneider WF, Bogicevic A (2005) NO oxidation properties of Pt(111) revealed by ab initio kinetic simulations. Phys Rev B 71:115406 (1–5)

  19. Gates BC (1995) Supported metal-clusters - synthesis, structure, and catalysis. Chem Rev 95:511–522

    Article  CAS  Google Scholar 

  20. Ertl G (2008) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  21. Anderson JA, Fernández-García M (2011) Supported metals in catalysis, 2nd edn. Catalytic science series: Vol 11, Imperial College Press, London

  22. Viñes F, Gomes JRB, Illas F (2014) Understanding the reactivity of metallic nanoparticles: beyond the extended surface model for catalysis. Chem Soc Rev. doi:10.1039/c3cs60421g

    Google Scholar 

  23. Brønsted N (1928) Acid and basic catalysis. Chem Rev 5:231–338

    Article  Google Scholar 

  24. Evans MG, Polanyi NP (1938) Inertia and driving force of chemical reactions. Trans Faraday Soc 34:11–24

    Article  CAS  Google Scholar 

  25. Boudart M (1997) In:Ertl G, Knözinger H, Weitkamp J (eds.) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim, p 1

  26. Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH (2001) The brønsted–evans–polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J Catal 197:229–231

    Article  CAS  Google Scholar 

  27. Viñes F, Vojvodic A, Abild-Pedersen F, Illas F (2013) Brønsted-evans-polanyi relationship for transition metal carbide and transition metal oxide surfaces. J Phys Chem C 117:41681

    Article  Google Scholar 

  28. Grabow LC, Studt F, Abild-Pedersen F, Petzold V, Kleis J, Bligaard T, Norskov JK (2011) Angew Chem Int Ed 50:4601

    Article  CAS  Google Scholar 

  29. Fajin JLC, Cordeiro MNDS, Illas F, Gomes JRB (2010) Descriptors controlling the catalytic activity of metallic surfaces towards water splitting. J Catal 276:92

    Article  CAS  Google Scholar 

  30. Fajín JCL, Cordeiro MNDS, Illas F, Gomes JRB (2014) Generalized brønsted-evans-polanyi relationships and descriptors for O-H Bond cleavage of organic molecules on transition metal surfaces. J Catal 313:24

    Article  Google Scholar 

  31. Kresse G, Hafner J (1993) Ab initio molecular-dynamics for liquid-metals. Phys Rev B47:558

    Article  Google Scholar 

  32. Kresse G, Hafner J (1993) Ab initio molecular-dynamics for open-shell transition-metals. Phys Rev B 48:13115

    Article  CAS  Google Scholar 

  33. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  34. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  35. Kresse G, Furthmüller J (1999) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mat Sci 6:15

    Article  Google Scholar 

  36. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B50:17953

    Article  Google Scholar 

  37. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces - applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  38. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation (46:6671, 1992) Phys Rev B 48:4978

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  40. Janthon P, Kozlov SM, Viñes F, Limtrakul J, Illas F (2013) Establishing the accuracy of broadly used density functionals in describing bulk properties of transition metals. J Chem Theory Comput 9:1631–1640

    Article  CAS  Google Scholar 

  41. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101

    Article  Google Scholar 

  42. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College Publishing, Orlando, p 335

    Google Scholar 

  43. Janthon P, Luo SA, Kozlov SM, Viñes F, Limtrakul J, Truhlar DG, Illas F (2013) Bulk properties of transition metals: a challenge for the design of universal density functionals. J Chem Theory Comput. doi:10.1021/ct500532v

    Google Scholar 

  44. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem 27:1787–1799

    Article  CAS  Google Scholar 

  45. Roldán A, Viñes F, Illas F, Ricart JM, Neyman KM (2008) Density functional studies of coinage metal nanoparticles: Scalability of their properties to bulk. Theor Chem Acc 120:565

    Article  Google Scholar 

  46. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  47. Fajin JLC, Illas F, Gomes JRG (2009) Effect of the exchange-correlation potential and of surface relaxation on the description of the H2O dissociation on Cu(111). J Chem Phys 130:224702

    Article  Google Scholar 

  48. Hollins P, Pritchard J (1979) Interactions of CO molecules adsorbed on Cu (111). Surf Sci 89:486–495

    Article  CAS  Google Scholar 

  49. Vollmer S, Witte G, Wöll C (2001) Determination of site specific adsorption energies of CO on copper. Cat Lett 77:97–101

    Article  CAS  Google Scholar 

  50. Mc Elhiney G, Papp H, Pritchard J (1976) The adsorption of Xe and CO on Ag(111). Surf Sci 54:617–634

    Article  CAS  Google Scholar 

  51. Elliot GS, Miller DR (1984) Proc 14th Int Symp on rare field gas dynamics. University of Tokyo Press, Tokyo, pp 349–358

    Google Scholar 

  52. Beret EC, Ghiringhelli LM, Scheffler M (2011) Free gold clusters: beyond the static, monostructure description. Faraday Discuss 152:153–167

    Article  CAS  Google Scholar 

  53. Beret EC, van Wijk MM, Ghiringhelli LM (2014) Reaction cycles and poisoning in catalysis by gold clusters: a thermodynamics approach. Int J Quantum Chem 114:57–65

    Article  CAS  Google Scholar 

  54. Habas M-P, Mele F, Sodupe M, Illas F (1999) Density functional cluster model study of bonding and coordination modes of CO2 on Pd(111). Surf Sci 431:208–219

    Article  CAS  Google Scholar 

  55. Rodriguez AH, Branda MM, Castellani NJ (2006) DFT studies of the adsorption and interaction of two methanol molecules on a MgO edge. THEOCHEM 769:249–254

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish MICINN grant CTQ2012-30751 and, in part, by the Generalitat de Catalunya 2014SGR97 XRQTC project. F.I acknowledges additional funding through the 2009 ICREA Academia award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Branda.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascucci, B., Otero, G.S., Belelli, P.G. et al. Comparative density functional theory based study of the reactivity of Cu, Ag, and Au nanoparticles and of (111) surfaces toward CO oxidation and NO2 reduction. J Mol Model 20, 2448 (2014). https://doi.org/10.1007/s00894-014-2448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2448-5

Keywords

Navigation