Skip to main content
Log in

Structural evidence for lack of inhibition of fish goose-type lysozymes by a bacterial inhibitor of lysozyme

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

It is known that bacteria contain inhibitors of lysozyme activity. The recently discovered Escherichia coli inhibitor of vertebrate lysozyme (Ivy) and its potential interactions with several goose-type (g-type) lysozymes from fish were studied using functional enzyme assays, comparative homology modelling, protein–protein docking, and molecular dynamics simulations. Enzyme assays carried out on salmon g-type lysozyme revealed a lack of inhibition by Ivy. Detailed analysis of the complexes formed between Ivy and both hen egg white lysozyme (HEWL) and goose egg white lysozyme (GEWL) suggests that electrostatic interactions make a dominant contribution to inhibition. Comparison of three dimensional models of aquatic g-type lysozymes revealed important insertions in the β domain, and specific sequence substitutions yielding altered electrostatic surface properties and surface curvature at the protein–protein interface. Thus, based on structural homology models, we propose that Ivy is not effective against any of the known fish g-type lysozymes. Docking studies suggest a weaker binding mode between Ivy and GEWL compared to that with HEWL, and our models explain the mechanistic necessity for conservation of a set of residues in g-type lysozymes as a prerequisite for inhibition by Ivy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Flemming A (1922) Proc R Soc London, Ser B 39:306–317

    Google Scholar 

  2. Jolles P, Jolles J (1984) Mol Cell Biochem 63:165–189

    Article  CAS  Google Scholar 

  3. Jollès P (1996) Lysozymes: Model enzymes in biochemistry and biology. Birkhäuser, Basel

  4. Wild P, Gabrieli A, Schraner EM, Pellegrini A, Thomas U, Frederik PM, Stuart MCA, VonFellenberg R (1997) Microsc Res Tech 39:297–304

    Article  CAS  Google Scholar 

  5. Canfield RE, McMurry S (1967) Biochem Biophys Res Commun 26:38–42

    Article  CAS  Google Scholar 

  6. Hikima J, Minagawa S, Hirono I, Aoki T (2001) Biochim Biophys Acta 1520:35–44

    CAS  Google Scholar 

  7. Irwin DM, Gong Z (2003) J Mol Evol 56:234–242

    Article  CAS  Google Scholar 

  8. Nilsen IW, Myrnes B, Edvardsen RB, Chourrout D (2003) Cell Mol Life Sci 60:2210–2218

    Article  CAS  Google Scholar 

  9. Jolles J, Jolles P (1975) Eur J Biochem 54:19–23

    Article  CAS  Google Scholar 

  10. Nilsen IW, Overbo K, Sandsdalen E, Sandaker E, Sletten K, Myrnes B (1999) FEBS Lett 464:153–158

    Article  CAS  Google Scholar 

  11. Nilsen IW, Myrnes B (2001) Gene 269:27–32

    Article  CAS  Google Scholar 

  12. Bachali S, Jager M, Hassanin A, Schoentgen F, Jolles P, Fiala-Medioni A, Deutsch JS (2002) J Mol Evol 54:652–664

    Article  CAS  Google Scholar 

  13. Weaver LH, Grutter MG, Remington SJ, Gray TM, Isaacs NW, Matthews BW (1984) J Mol Evol 21:97–111

    Article  Google Scholar 

  14. Grinde B (1989) FEMS Microbiol Lett 60:179–182

    Article  CAS  Google Scholar 

  15. Monchois V, Abergel C, Sturgis J, Jeudy S, Claverie JM (2001) J Biol Chem 276:18437–18441

    Article  CAS  Google Scholar 

  16. Fernie-King BA, Seilly DJ, Davies A, Lachmann PJ (2002) Infect Immun 70:4908–4916

    Article  CAS  Google Scholar 

  17. Callewaert L, Aertsen A, Deckers D, Michiels CW (2006) Commun Appl Biol Sci 71:87–90

    CAS  Google Scholar 

  18. Abergel C, Monchois V, Byrne D, Chenivesse S, Lembo F, Lazzaroni JC, Claverie JM (2007) Proc Natl Acad Sci USA 104:6394–6399

    Article  CAS  Google Scholar 

  19. Deckers D, Masschalck B, Aertsen A, Callewaert L, Van Tiggelen CG, Atanassova M, Michiels CW (2004) Cell Mol Life Sci 61:1229–1237

    Article  CAS  Google Scholar 

  20. Lukomski S, Hoe NP, Abdi I, Rurangirwa J, Kordari P, Liu MY, Dou SJ, Adams GG, Musser JM (2000) Infect Immun 68:535–542

    Article  CAS  Google Scholar 

  21. Fernie-King BA, Seilly DJ, Lachmann PJ (2004) Immunol 111:444–452

    Article  CAS  Google Scholar 

  22. Callewaert L, Masschalck B, Deckers D, Nakimbugwe D, Atanassova M, Aertsen A, Michiels CW (2005) Enzyme Microb Technol 37:205–211

    Article  CAS  Google Scholar 

  23. Callewaert L, Masschalck B, Aertsen A, Michiels CW (2005) Commun Appl Biol Sci 70:73–87

    CAS  Google Scholar 

  24. Kyomuhendo P, Myrnes B, Nilsen IW (2007) Cell Mol Life Sci 64:2841–2847

    Article  CAS  Google Scholar 

  25. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2005) Nucleic Acids Res 33:D154–159

    Article  CAS  Google Scholar 

  26. Notredame C, Higgins DG, Heringa J (2000) J Mol Biol 302:205–217

    Article  CAS  Google Scholar 

  27. Boguski MS, Lowe TM, Tolstoshev CM (1993) Nat Genet 4:332–333

    Article  CAS  Google Scholar 

  28. Hall T (1999) Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  29. Saitou N, Nei M (1987) Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  30. Felsenstein J (1989) Cladistics 5:164–166

    Google Scholar 

  31. Felsenstein J (1985) Evolution 39:783–791

    Article  Google Scholar 

  32. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  33. Abagyan R, Totrov M, Kuznetsov D (1994) J Comput Chem 15:488–506

    Article  CAS  Google Scholar 

  34. Jaroszewski L, Pawlowski K, Godzik A (1998) J Mol Model 4:294–309

    Article  CAS  Google Scholar 

  35. Luthy R, Bowie JU, Eisenberg D (1992) Nature 356:83–85

    Article  CAS  Google Scholar 

  36. Colovos C, Yeates TO (1993) Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  37. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  38. Hooft RWW, Vriend G, Sander C, Abola EE (1996) Nature 381:272–272

    Article  CAS  Google Scholar 

  39. Schneidman-Duhovny D, Inbar Y, Polak V, Shatsky M, Halperin I, Benyamini H, Barzilai A, Dror O, Haspel N, Nussinov R, Wolfson HJ (2003) Proteins Struct Funct Genet 52:107–112

    Article  CAS  Google Scholar 

  40. Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  41. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P (1995) Comput Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  42. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  43. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  44. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  45. Weaver LH, Grutter MG, Matthews BW (1995) J Mol Biol 245:54–68

    Article  CAS  Google Scholar 

  46. Grütter MG, Weaver LH, Matthews BW (1983) Nature 303:828–831

    Article  Google Scholar 

  47. Drozdov-Tikhomirov LN, Linde DM, Poroikov VV, Alexandrov AA, Skurida GI (2001) J Biomol Struct Dyn 19:279–284

    CAS  Google Scholar 

  48. Honig B, Nicholls A (1995) Science 268:1144–1149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Norwegian Research Council (NFR), the Norwegian Institute of Fisheries and Aquaculture Research, Tromsø (Fiskeriforskning) and the Norwegian Structural Biology Centre (NorStruct) at the University of Tromsø. Recombinant Ivy was a kind gift from Professor Chris Michiels at the Catholic University of Leuven, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne O. Smalås.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyomuhendo, P., Nilsen, I.W., Brandsdal, B.O. et al. Structural evidence for lack of inhibition of fish goose-type lysozymes by a bacterial inhibitor of lysozyme. J Mol Model 14, 777–788 (2008). https://doi.org/10.1007/s00894-008-0317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0317-9

Keywords

Navigation