Skip to main content
Log in

Comparison of goose-type, chicken-type, and phage-type lysozymes illustrates the changes that occur in both amino acid sequence and three-dimensional structure during evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The three-dimensional structure of goose-type lysozyme (GEWL), determined by x-ray crystallography and refined at high resolution, has similarities to the structures of hen (chicken) eggwhite lysozyme (HEWL) and bacteriophage T4 lysozyme (T4L). The nature of the structural correspondence suggests that all three classes of lysozyme diverged from a common evolutionary precursor, even though their amino acid sequences appear to be unrelated (Grütter et al. 1983).

In this paper we make detailed comparisons of goose-type, chicken-type, and phage-type lysozymes. The lysozymes have undergone conformational changes at both the blobal and the local level. As in the globins, there are corresponding α-helices that have rigid-body displacements relative to each other, but in some cases corresponding helices have increased or decreased in length, and in other cases there are helices in one structure that have no counterpart in another.

Independent of the overall structural correspondence among the three lysozyme backbones is another, distinct correspondence between a set of three consecutive α-helices in GEWL and three consecutive α-helices in T4L. This structural correspondence could be due, in part, to a common energetically favorable contact between the first and the third helices.

There are similarities in the active sites of the three lysozymes, but also one striking difference. Glu 73 (GEWL) spatially corresponds to Glu 35 (HEWL) and to Glu 11 (T4L). On the other hand, there are two aspartates in the GEWL active site, Asp 86 and Asp 97, neither of which corresponds exactly to Asp 52 (HEWL) or Asp 20 (T4L). (The discrepancy in the location of the carboxyl groups is about 10 Å for Asp 86 and 4 Å for Asp 97.) This lack of structural correspondence may reflect some differences in the mechanisms of action of three lysozymes. When the amino acid sequences of the three lysozyme types are aligned according to their structural correspondence, there is still no apparent relationship between the sequences except for possible weak matching in the vicinity of the active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson WF, Grütter MG, Remington SJ, Matthews BW (1981) Crystallographic determination of the mode of binding of oligosaccharides to T4 bacteriophage lysozyme: implications for the mechanism of catalysis. J Mol Biol 147:523–543

    Article  PubMed  Google Scholar 

  • Argos P, Rossmann MG (1979) Structural comparisons of hemebinding proteins. Biochemistry 18:4951–4960

    Article  PubMed  Google Scholar 

  • Argos P, Tsukihara T, Rossmann MG (1980) A structural comparison of concanavalin A and tomato bushy stunt virus. J Mol Evol 15:169–179

    Article  PubMed  Google Scholar 

  • Arnheim N, Inouye M, Law L, Laudin A (1973) Chemical studies on the enzymatic specificity of goose egg white lysozyme. J Biol Chem. 248:233–236

    PubMed  Google Scholar 

  • Artymiuk PJ, Blake CCF, Sippel AE (1981) Genes pieced together-exons delineate homologous structures of diverged lysozymes. Nature 290:287–288

    Article  PubMed  Google Scholar 

  • Banner DW, Bloomer AC, Petsko GA, Phillips DC, Pogson CI, Wilson IA, Corran PH, Furth AI, Milman JD, Offord RE, Priddle J, Waley SC (1975) Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution. Nature 255:609–614

    Article  PubMed  Google Scholar 

  • Bernard O, Hozumi N, Tonegawa S (1978) Sequences of mouse immunoglobulin light chain genes before and after somatic changes. Cell 15:1133–1144

    Article  PubMed  Google Scholar 

  • Blake CCF (1978) Do genes-in-pieces imply proteins-in-pieces? Nature 273:267

    Article  PubMed  Google Scholar 

  • Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Å resolution. Nature 206:757–761

    PubMed  Google Scholar 

  • Canfield RE, McMurry S (1967) Purification and characterization of a lysozyme from goose egg-white. Biochem Biophys Res Commun 26:38–42

    Article  PubMed  Google Scholar 

  • Canfield RD, Kammesman S, Sobel JH, Morgan FJ (1971) Primary structure of lysozymes from man and goose. Nature (New Biol) 232:16–17

    Google Scholar 

  • Chothia C, Levitt M, Richardson D (1977) Structure of proteins: packing of α-helices and pleated sheets. Proc Natl Acad Sci USA 74:4130–4134

    PubMed  Google Scholar 

  • Craik CS, Buchman SR, Beychok S (1980) Intron-exon splice junctions map at protein surfaces. Proc Natl Acad Sci USA 77:1384–1388

    PubMed  Google Scholar 

  • Craik CS, Buchman SR, Beychok S (1981) O2 binding properties of the product of the central exon of β-globin gene. Nature 291:87–90

    Article  PubMed  Google Scholar 

  • Craik CS, Sprang S, Fletterick R, Rutter WJ (1982) Intronexon splice junctions map at protein surfaces. Nature 299:180–182

    Article  PubMed  Google Scholar 

  • Fitch WM (1966) An improved method of testing for evolutionary homology. J Mol Biol 16:9–16

    PubMed  Google Scholar 

  • Ford LO, Johnson LN, Machin PA, Phillips DC, Tjian R (1974) Crystal structure of a lysozyme-tetrasaccharide lactone complex. J Mol Biol 88:349–371

    Article  PubMed  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501

    Article  PubMed  Google Scholar 

  • Gö M (1983) Molecular structural units, exons, and function of chicken lysozyme. Proc Natl Acad Sci USA 80:1964–1968

    PubMed  Google Scholar 

  • Grütter MG, Matthews BW (1982) Amino acid substitutions far from the active site of bacteriophage T4 lysozyme reduce catalytic activity and suggest that the C-terminal lobe of the enzyme participates in substrate binding. J Mol Biol 154:525–535

    PubMed  Google Scholar 

  • Grütter MG, Weaver LH, Matthews BW (1983) Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes? Nature 303:828–831

    Article  PubMed  Google Scholar 

  • Harada H, Sarma R, Kakudo M, Hara S, Ikenaka T (1981) The three-dimensional structure of the lysozyme produced byStreptomyces erythraeus. J Biol Chem 256:11600–11602

    PubMed  Google Scholar 

  • Imoto I, Johnson LN, North ACT, Phillips DC, Rupley J (1972) Vertebrate lysozymes. In: Boyer P (ed) The enzymes, vol. 7, 3rd ed. Academic Press, New York, pp 665–868

    Google Scholar 

  • Inouye M, Tsugita A (1966) The amino acid sequence of T4 bacteriophage lysozyme. J Mol Biol 22:193–196

    Article  Google Scholar 

  • Isaacs NW, Machin KJ, Masakuni M (1985) The three-dimensional structure of the goose-type lysozyme from the egg-white of the black swan,Cygnus atratus. Australian J Biol Sci, in press

  • Jollès J, Schoentgen F, Jollès P (1981) Les lysozymes de type different ont-ils un precurseur commun? C R Hebd Seances Acad Sci (Paris) 292:891–892

    Google Scholar 

  • Jollès P, Schoentgen F, Jollès J, Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants II> Amino acid sequence of cow lysozyme 2 and immunological comparisons with other lysozymes. J Biol Chem 259:11617–11625

    PubMed  Google Scholar 

  • Jung A, Sippel AE, Grez M, Schultz G (1980) Exons encode functional and structural units of chicken lysozyme. Proc Natl Acad Sci USA 77:5759–5763

    PubMed  Google Scholar 

  • Kleppe G, Vasstrand E, Jensen HB (1981) The specificity requirements of bacteriophage T4 lysozyme. Involvement ofN-acetamido groups. Eur J Biochem 119:589–593

    Article  PubMed  Google Scholar 

  • Lebioda L, Hatada M, Tulinsky A, Mavridis IM (1982) comparison of the folding of 2-keto-3-deoxy-6-phosphogluconate aldolase, triosephosphate isomerase and pyruvate kinase. Implications in molecular evolution. J Mol Biol 162:445–458

    Article  PubMed  Google Scholar 

  • Lesk AM, Chothia C (1980) How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol 136:225–270

    Article  PubMed  Google Scholar 

  • Levine M, Muirhead H, Stammers DK, Stuart DI (1978) Structure of pyruvate kinase and similarities with other enzymes: possible implications for protein taxonomy and evolution. Nature 271:626–630

    Article  PubMed  Google Scholar 

  • Liljas L, Unge T, Fridborg K, Jones TA, Lovgren S, Skoglund U, Strandberg B (1982) Structure of satellite tobacco necrosis virus at 3.0Å resolution. J Mol Biol 159:93–108

    Article  PubMed  Google Scholar 

  • Matthews BW (1977) X-ray structure of proteins. In: Neurath H, Hill RL (eds) The proteins, vol 3. 3rd ed. Academic Press, New York, pp 403–590

    Google Scholar 

  • Matthews BW, Remington SJ (1974) The three-dimensional structure of the lysozyme from bacteriophage T4. Proc Natl Acad Sci USA 71:4178–4182

    PubMed  Google Scholar 

  • Matthews BW, Rossmann MG (1985) Comparison of protein structures. Methods Enzymol, in press

  • Matthews BW, Grütter MG, Anderson WF, Remington SJ (1981a) Common precursor of lysozymes from hen egg-white and bacteriophage T4. Nature 290:334–335

    Article  PubMed  Google Scholar 

  • Matthews BW, Remington SJ, Grütter MG, Anderson WF (1981b) Relation btween hen egg-white lysozyme and bacteriophage T4 lysozyme: evolutional implications. J Mol Biol 147:545–558

    Article  PubMed  Google Scholar 

  • McLachlan AD (1979) Gene duplications in the structural evolution of chymotrypsin. J Mol Biol 128:49–79

    Article  PubMed  Google Scholar 

  • Ohlendorf DH, Anderson WF, Lewis M, Pabo CO, Matthews BW (1983) Comparsion of the structures of cro and “ repressor proteins from bacteriophage “. J Mol Biol 164:757–769

    Google Scholar 

  • Ploegman JH, Drent G, Kalk KH, Hol WGJ (1978) Structure of bovineliver rhodanese. I. Structure determination at 2.5 Å resolution and a comparison of the conformation and sequence of its two domains. J Mol Biol 123:557–594

    Article  PubMed  Google Scholar 

  • Quinto C, Quiroga M, Swain WF, Nikovits WC Jr, Standring DN, Pictet R, Valenzuela P, Rutter WJ (1982) Rat preprocarboxypeptidase A: cDNA sequence and preliminary characterization of the gene. Proc Natl Acad Sci USA 79:31–35

    PubMed  Google Scholar 

  • Rao ST, Rossmann MG (1973) Comparison of super-secondary structuresin proteins. J Mol Biol 76:241–256

    Article  PubMed  Google Scholar 

  • Remington SJ, Matthews BW (1978) A general method to assess the similarity of protein structures with applications to T4 bacteriophage. Proc Natl Acad Sci USA 75:2180–2184

    PubMed  Google Scholar 

  • Remington SJ, Matthews BW (1980) A systematic approach to the comparison of protein structures. J Mol Biol 140:77–99

    Article  PubMed  Google Scholar 

  • Remington SJ, Ten Eyck LF, Matthews BW (1977) Atomic coordinates for T4 phage lysozyme. Biochem Biophys Res Commun 75:265–269

    Article  PubMed  Google Scholar 

  • Remington SJ, Anderson WF, Owen J, Ten Eyck LF, Grainger CT, Matthews BW (1978) The structure of the lysozyme from bacteriophage T4: an electron density map at 2.4 Å resolution. J Mol Biol 118:81–91

    Article  PubMed  Google Scholar 

  • Richardson JS, Richardson DC, Thomas KA, Silverton EW, Davies DR (1976) Similarity of three-dimensional structure between the immunoglobulin domain and the copper, zinc superoxide dismutase subunit. J Mol Biol 102:221–235

    Article  PubMed  Google Scholar 

  • Rossmann MG (1979) Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting. J Appl Crystallogr 12:225–238

    Article  Google Scholar 

  • Rossmann MG, Argos P (1976) A comparison of the heme binding pocket in globins and cytochrome b5. J Biol Chem 250:7525–7532

    Google Scholar 

  • Rossmann MG, Argos P (1976) Exploring structural homology of proteins. J Mol Biol 105:75–96

    Article  PubMed  Google Scholar 

  • Rossmann MG, Argos P (1977) The taxonomy of protein structure. J Mol Biol 109:99–129

    PubMed  Google Scholar 

  • Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of a nucleotide-binding protein. Nature 250:194–199

    Article  PubMed  Google Scholar 

  • Rossmann MG, Abad-Zapatero C, Murthy MRN, Liljas, L, Jones TA, Strandberg B (1983) Structural comparisons of some small spherical plant viruses. J Mol Biol 165:711–736

    PubMed  Google Scholar 

  • Sarma R, Harada S, Tanaka N, Kakudo M, Hara S, Ikenaka T (1979) Structure ofStreptomyces erythraeus lysozyme at 6 Å resolution. J Biochem (Tokyo) 86:1765–1771

    Google Scholar 

  • Schmid MF, Weaver LH, Holmes MA, Grütter MG, Ohlendorf DH, Reynolds RA, Remington SJ, Matthews BW (1981) An oscillation data collection system for high-resolution protein crystallography. Acta Crystallogr A37:701–710

    Article  Google Scholar 

  • Schoentgen F, Jollés J, Jollés P (1982) Complete amino acid sequence of ostrich (Struthio camelus) egg-white lysozyme, a goose-type lysozyme. Eur J Biochem 123:489–497

    PubMed  Google Scholar 

  • Sharon N, Eshdat Y, Maoz I, Bernstein Y, Prager EM, Wilson AC (1974) Comparative studies of the active site region of lysozymes from eleven different sources. Isr J Chem 12:591–603

    Google Scholar 

  • Simpson RJ, Morgan FJ (1983) Complete amino acid sequence of Embden Goose (Anser anser) egg-white lysozyme. Biochim Biophys Acta 744:349–351

    Google Scholar 

  • Simpson RJ, Begg GS, Dorow DS, Morgan FJ (1980) Complete amino acid sequence of the goose-type lysozyme from the egg white of the black swan. Biochemistry 19:1814–1819

    Article  PubMed  Google Scholar 

  • Stein IP, Catterall JF, Kristo P, Means AR, O'Malley BW (1980) Ovomucoid intervening sequences specify functional domains and generate protein polymorphism. Cell 21:681–687

    Article  PubMed  Google Scholar 

  • Steitz TA, Ohlendorf DH, McKay DB, Anderson WF, Matthews BW (1982) Structural similarity in the DNA-binding domains of catabolite gene activator andcro repressor proteins. Proc Natl Acad Sci USA 79:3097–3100

    PubMed  Google Scholar 

  • Tang JJN, James MNG, Hsu IN, Jenkins JA, Blundell TA (1978) Structural evidence for gene duplication in the evolution of the acid proteases. Nature 271:618–621

    Article  PubMed  Google Scholar 

  • Wierenga RK, Drenth J, Schultz GE (1983) Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain ofp-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase. J Mol Biol 167:725–739

    PubMed  Google Scholar 

  • Yaguchi M, Roy C, Rollin CF, Paice MG, Jurasek L (1983) A fungal cellulase shows sequence homology with the active site of hen egg-white lysozyme. Biochem Biophys Res Commun 116:408–411

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, L.H., Grütter, M.G., Remington, S.J. et al. Comparison of goose-type, chicken-type, and phage-type lysozymes illustrates the changes that occur in both amino acid sequence and three-dimensional structure during evolution. J Mol Evol 21, 97–111 (1985). https://doi.org/10.1007/BF02100084

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100084

Key words

Navigation