, Volume 18, Issue 2, pp 261–270 | Cite as

Isolation, growth and genome of the Rhodothermus RM378 thermophilic bacteriophage

  • Sigridur Hjorleifsdottir
  • Arnthor Aevarsson
  • Gudmundur O. Hreggvidsson
  • Olafur H. Fridjonsson
  • Jakob K. KristjanssonEmail author
Original Paper


Several bacteriophages that infect different strains of the thermophilic bacterium Rhodothermus marinus were isolated and their infection pattern was studied. One phage, named RM378 was cultivated and characterized. The RM378 genome was also sequenced and analyzed. The phage was grouped as a member of the Myoviridae family with A2 morphology. It had a moderately elongated head, with dimensions of 85 and 95 nm between opposite apices and a 150 nm long tail, attached with a connector to the head. RM378 showed a virulent behavior that followed a lytic cycle of infection. It routinely gave lysates with 1011 pfu/ml, and sometimes reached titers as high as 1013 pfu/ml. The titer remained stable up to 65 °C but the phage lost viability when incubated at higher temperatures. Heating for 30 min at 96 °C lowered the titer by 104. The RM378 genome consisted of ds DNA of 129.908 bp with a GC ratio of 42.0 % and contained about 120 ORFs. A few structural proteins, such as the major head protein corresponding to the gp23 in T4, could be identified. Only 29 gene products as probable homologs to other proteins of known function could be predicted, with most showing only low similarity to known proteins in other bacteriophages. These and other studies based on sequence analysis of a large number of phage genomes showed RM378 to be distantly related to all other known T4-like phages.


Thermophile Bacteriophage RM378 Rhodothermus marinus 



Plaque forming units



Parts of the research leading to these results have received funding from the European Union’s Seventh Framework Programme managed by REAResearch Executive Agency [(FP7/2007-2013) (FP7/2007-2011)] under grant agreement no 286556. We thank Johann Arnfinnsson and Gudmundur Georgsson for the electron microscopy, and Haflidi Asgrimsson and Brynjolfur Bjarnason for software development.


  1. Ackermann HW (2009) Phage classification and characterization. Methods Molec Biol 501:127–140CrossRefGoogle Scholar
  2. Alfredsson GA, Kristjansson JK, Hjorleifsdottir S, Stetter KO (1988) Rhodothermus marinus, gen nov sp nov, a thermophilic bacterium from submarine hot spring in Iceland. J Gen Microbiol 134:299–306Google Scholar
  3. Bjornsdottir SH, Blondal T, Hreggvidsson GO, Eggertsson G, Petursdottir S, Hjorleifsdottir S, Thorbjarnardottir SH, Kristjansson JK (2005) Rhodothermus marinus: physiology and molecular biology. Extremophiles 10:1–16PubMedCrossRefGoogle Scholar
  4. Black LW, Rao VB (2012) Structure, assembly and DNA packaging of the bacteriopahge T4 head in adv in virus research. In: Lobocka M, Szybalski (eds) WT pages, vol 82. Elsevier publishing, London, pp 119–153Google Scholar
  5. Blondal T, Thorbjarnardottir SH, Kieleczawa J, Einarsson JM, Hjorleifsdottir S, Kristjansson JK, Eggertsson G (1999) Cloning, sequence analysis and overexpression of a Rhodothermus marinus gene encoding a thermostable thymidine kinase. FEMS Microbiol Lett 179:311–316PubMedCrossRefGoogle Scholar
  6. Blondal T, Thorbjarnardottir SH, Kieleczawa J, Hjorleifsdottir S, Kristjansson JK, Einarsson JM, Eggertsson G (2001) Cloning, sequence analysis and functional characterization of DNA polymerase I from the thermophilic eubacterium Rhodothermus marinus. Biotechnol Appl Biochem 34:37–45PubMedCrossRefGoogle Scholar
  7. Blondal T, Hjorleifsdottir SH, Fridjonsson OH, Aevarsson A, Skirnisdottir S, Hermannsdottir AG, Hreggvidsson GO, Smith AV, Kristjansson JK (2003) Discovery and characterization of a thermostable bacteriophage RNA ligase homologous to T4 RNA ligase 1. Nucleic Acids Res 31:7247–7254PubMedCentralPubMedCrossRefGoogle Scholar
  8. Blondal T, Hjorleifsdottir S, Aevarsson A, Fridjonsson OH, Skirnisdottir S, Wheat JO, Hermannsdottir AG, Hreggvidsson GO, Smith AV, Kristjansson JK (2005a) Characterization of a 5′-Polynucleotide Kinase/3′-phosphatase from bacteriophage RM378. J Biol Chem 280:5188–5194PubMedCrossRefGoogle Scholar
  9. Blondal T, Thorisdottir A, Unnsteinsdottir U, Hjorleifsdottir S, Aevarsson A, Ernstsson S, Fridjonsson OH, Skirnisdottir S, Wheat JO, Hermannsdottir AG, Sigurdsson ST, Hreggvidsson GO, Smith AV, Kristjansson JK (2005b) Isolation and characterization of a thermostable RNA ligase 1 from a Thermus scotoductus bacteriophage TS2126 with good single-stranded DNA ligation properties. Nucleic Acids Res 33:135–142PubMedCentralPubMedCrossRefGoogle Scholar
  10. Breitbart M, Wegley L, Leeds S, Schoenfeld T, Rohwer F (2004) Phage community dynamics in hot springs. Appl Environ Microbiol 70:1633–1640PubMedCentralPubMedCrossRefGoogle Scholar
  11. Comeau AM, Krisch HM (2008) The capsid of the T4 phage superfamily: the evolution diversity, and structure of some of the most prevalent proteins in the biosphere. Mol Biol Evol 25:1321–1332PubMedCrossRefGoogle Scholar
  12. Degryse E, Glansdorff N, Pierard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196PubMedCrossRefGoogle Scholar
  13. Durantel D, Croizier L, Ayres MD, Croizier G, Possee RD, Lopez-Ferber M (1998) The pnk/pnl gene (ORF 86) of Autographa californica nucleopolyhedrovirus is a non-essential, immediate early gene. J Gen Virol 79:629–637PubMedGoogle Scholar
  14. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred II error probabilities. Genome Res 8:186–194PubMedCrossRefGoogle Scholar
  15. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred I accuracy assessment. Genome Res 8:175–185PubMedCrossRefGoogle Scholar
  16. Filée J, Tétart F, Suttle CA, Krisch HM (2005) Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc Natl Acad Sci USA 102:12471–12476PubMedCrossRefGoogle Scholar
  17. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae. Science 269:496–512PubMedCrossRefGoogle Scholar
  18. Galburt EA, Pelletier J, Wilson G, Stoddard BL (2002) Structure of a tRNA repair enzyme and molecular biology workhorse: T4 polynucleotide kinase. Structure 10:1249–1260PubMedCrossRefGoogle Scholar
  19. Gordon D, Desmarais C, Green P (2001) Automated finishing with autofinish. Genome Res 11:614–625PubMedCrossRefGoogle Scholar
  20. Hjorleifsdottir S, Hreggvidsson GO, Fridjonsson OH, Aevarsson A, Kristjansson JK (2002) Bacteriophage RM 378 of a thermophilic host organism. US patent 6,492,161Google Scholar
  21. Ignacio-Espinoza JC, Sullivan MB (2012) Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol 8:2113–2126. doi: 10.1111/j.1462-2920.2012.02704.x CrossRefGoogle Scholar
  22. Joyce CM, Steitz TA (1994) Function and structure relationships in DNA polymerases. Annu Rev Biochem 63:777–822PubMedCrossRefGoogle Scholar
  23. Karam JD, Konigsberg WH (2000) DNA polymerase of the T4-related bacteriophages. Prog Nucleic Acid Res Mol Biol 64:65–96PubMedCrossRefGoogle Scholar
  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  25. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224. doi: 101186/1471-2180-9-224 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedCentralPubMedCrossRefGoogle Scholar
  27. Maizel JV Jr, Lenk RP (1981) Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc Natl Acad Sci USA 78:7665–7669PubMedCrossRefGoogle Scholar
  28. Marteinsson VT, Bjornsdottir SH, Bienvenu N, Kristjansson JK, Birrien JL (2010) Rhodothermus profundi sp. nov., a thermophilic bacterium isolated from a deep-sea hydrothermal vent in the Pacific Ocean. Int J SystEvol Micriobiol 60:2729–2734CrossRefGoogle Scholar
  29. Moreira L, Nobre MF, Sa-Correia I, daCosta MS (1996) Genomic typing and fatty acids composition of Rhodothermus marinus. Syst Appl Microbiol 19:83–90CrossRefGoogle Scholar
  30. Mueser TC, Nossal NG, Hyde CC (1996) Structure of bacteriophage T4 RNase H, a 5′ to 3′ RNA-DNA and DNA–DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Cell 85:1101–1112PubMedCrossRefGoogle Scholar
  31. Nolan M, Tindall BJ, Pomrenke H, Lapidus A, Copeland A, Glavina del Rio T, Lucas S, Chen F, Tice H, Cheng JF, Saunders E, Han C, Bruce D, Goodwin L, Chain P, Pitluck S, Ovchinnikova G, Pati A, Detter JC (2009) Complete genome sequence of Rhodothermus marinus type strain (R-10). Stand Genomic Sci 1:283–291PubMedCentralPubMedCrossRefGoogle Scholar
  32. Nossal NG (1992) Protein-protein interactions at a DNA replication fork: bacteriophage T4 as a model. FASEB J 6:871–878PubMedGoogle Scholar
  33. Petrov VM, Karam JD (2004) Diversity of structure and function of DNA polymerase (gp43) of T4-related bacteriophages. Biochemistry (Moscow) 69:1213–1218CrossRefGoogle Scholar
  34. Petursdottir SK, Hreggvidsson GO, Da Costa MS, Kristjansson JK (2000) Genetic diversity analysis of Rhodothermus reflects geographical origin of the isolates. Extremophiles 4:267–274PubMedCrossRefGoogle Scholar
  35. Rand KN, Gait MJ (1984) Sequence and cloning of bacteriophage T4 gene 63 encoding RNA ligase and tail fibre attachment activities. EMBO J 3:397–402PubMedGoogle Scholar
  36. Rao VB, Black LW (2010) Structure and assembly of bacteriophage T4 head. Virol J 7:356PubMedCentralPubMedCrossRefGoogle Scholar
  37. Rohwer F, Prangishvili D, Lindell D (2009) Roles of viruses in the environment. Environ Microbiol 11:2771–2774PubMedCrossRefGoogle Scholar
  38. Rusch DB, Halpern AL, Sutton G et al (2007) The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:398–431CrossRefGoogle Scholar
  39. Sawaya MR, Guo S, Tabor S, Richardson CC, Ellenberger T (1999) Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99:167–177PubMedCrossRefGoogle Scholar
  40. Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D (2008) Assembly of viral metagenomes from Yellowstone hot springs. Appl Environ Microbiol 74:4164–4174PubMedCentralPubMedCrossRefGoogle Scholar
  41. Tétart F, Desplats C, Kutateladze M, Monod C, Ackermann HW, Krisch H (2001) Pylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J Bacteriol 183:358–366PubMedCentralPubMedCrossRefGoogle Scholar
  42. Thogersen HC, Morris HR, Rand KN, Gait MJ (1985) Location of the adenylylation site in T4 RNA ligase. Eur J Biochem 147:325–329PubMedCrossRefGoogle Scholar
  43. Thorbjarnardottir SH, Jonsson ZO, Andresson OS, Kristjansson JK, Eggertsson G, Palsdottir A (1995) Cloning and sequence analysis of the DNA ligase-ecoding gene of Rhdothermus marinus, and overpruduction, purification and characterization of two thermophilic DNA ligases. Gene 161:1–6PubMedCrossRefGoogle Scholar
  44. Wang Y, Zhang X (2010) Genome analysis of deep-sea thermophilic phage D6E. Appl Environ Microbiol 76:7861–7866PubMedCentralPubMedCrossRefGoogle Scholar
  45. Wang J, Sattar AK, Wang CC, Karam JD, Konigsberg WH, Steitz TA (1997) Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell 89:1087–1099PubMedCrossRefGoogle Scholar
  46. Wei D, Zhang X (2010) Proteomic analysis of interactions between a deep-sea thermophilic bacteriophage and its host at high temperature. J Virol 84:2365–2373PubMedCentralPubMedCrossRefGoogle Scholar
  47. Weinbauer MG (2004) Ecology of prokaryotic viruses. Microbiol Rev 28:127–181Google Scholar
  48. Yu MX, Slater MR, Ackermann HW (2006) Isolation and characterization of Thermus bacteriophages. Arch Virol 151:663–679PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Sigridur Hjorleifsdottir
    • 1
    • 3
  • Arnthor Aevarsson
    • 2
  • Gudmundur O. Hreggvidsson
    • 1
    • 4
  • Olafur H. Fridjonsson
    • 1
  • Jakob K. Kristjansson
    • 2
    Email author
  1. 1.Matis ohfReykjavikIceland
  2. 2.Prokazyme ehfReykjavikIceland
  3. 3.ORF BiotechnologyKopavogurIceland
  4. 4.Institute of BiologyUniversity of IcelandReykjavikIceland

Personalised recommendations