Skip to main content
Log in

A quantum-mechanical study of the reaction mechanism of sulfite oxidase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The oxidation of sulfite to sulfate by two different models of the active site of sulfite oxidase has been studied. Both protonated and deprotonated substrates were tested. Geometries were optimized with density functional theory (TPSS/def2-SV(P)) and energies were calculated either with hybrid functionals and large basis sets (B3LYP/def2-TZVPD) including corrections for dispersion, solvation, and entropy, or with coupled-cluster theory (LCCSD(T0)) extrapolated toward a complete basis set. Three suggested reaction mechanisms have been compared and the results show that the lowest barriers are obtained for a mechanism where the substrate attacks a Mo-bound oxo ligand, directly forming a Mo-bound sulfate complex, which then dissociates into the products. Such a mechanism is more favorable than mechanisms involving a Mo–sulfite complex with the substrate coordinating either by the S or O atom. The activation energy is dominated by the Coulomb repulsion between the Mo complex and the substrate, which both have a negative charge of −1 or −2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kaim W, Schwederski B (1991) Bioinorganic chemistry: inorganic elements in the chemistry of life J. Wiley, Chichester

    Google Scholar 

  2. Hu YL, Ribbe MW (2010) Acc Chem Res 43:475

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Hille R (1996) Chem Rev 96:2757

    Article  PubMed  CAS  Google Scholar 

  4. Mendel RR, Bittner F (2006) Biochim Biophys Acta 1763:621–663

    Article  PubMed  CAS  Google Scholar 

  5. Feng CJ, Tollin G, Enemark JH (2007) Biochim Biophys Acta 1774:527–539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Mendel RR (2007) J Exp Bot 58:2289–2296

    Article  PubMed  CAS  Google Scholar 

  7. Pilato RS, Stiefel EI (1999) Bioinorganic catalysis, 2nd edn (Reedijk J, Bouwman E eds) Marcel Dekker, New York, pp 81–152

  8. Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997) Cell 91:973–983

    Article  PubMed  CAS  Google Scholar 

  9. Schrader N, Fischer K, Theis K, Mendel RR, Schwarz G, Kisker C (2003) Structure 11:1251–1263

    Article  PubMed  CAS  Google Scholar 

  10. Kappler U, Bailey S (2005) J Biol Chem 280:24999–25007

    Article  PubMed  CAS  Google Scholar 

  11. Karakas E, Wilson HL, Graf TN, Xiang S, Jaramillo-Buswuets S, Rajagopalan KV, Kisker C (2005) J Biol Chem 280:33506–33515

    Article  PubMed  CAS  Google Scholar 

  12. Kappler U, Bailey S, Feng CJ, Honeychurch MJ, Hanson GR, Bernhardt PV, Tollin G, Enemark JH (2006) Biochemistry 45:9696–9705

    Article  PubMed  CAS  Google Scholar 

  13. Hille R (1994) Biochem Biophys Acta 1184:143

    PubMed  CAS  Google Scholar 

  14. Hille R (1997) J Biol Inorg Chem 2:804

    Article  CAS  Google Scholar 

  15. Das SK, Chaudhury PK, Biswas D, Sarkar S (1994) J Am Chem Soc 116:9061–9070

    Article  CAS  Google Scholar 

  16. Chaudhury PK, Das SK, Sarkar S (1996) Biochem J 319:953–959

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Lorber C, Plutino MR, Elding LI, Nordlander E (1997) J Chem Soc Dalton Trans 21:3997–4004

    Article  Google Scholar 

  18. Nagarajan K, Chaudhury PK, Srinivasan BR, Sarkar S (2001) Chem Commun 1786–1787

  19. Pal K, Chaudhury PK, Sarkar S (2007) Chem Asian J 2:956–964

    Article  PubMed  CAS  Google Scholar 

  20. George GN, Garrett RM, Graf T, Prince RC, Rajagopalan KV (1998) J Am Chem Soc 120:4522–4523

    Article  CAS  Google Scholar 

  21. Klein EL, Raitsimring AM, Atashkin AV, Rajapakshe A, Johnson-Winters K, Arnold AR, Potapov A, Goldfarb D, Enemark JH (2012) Inorg Chem 51:1408–1418

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Klein EL, Raitsimring AM, Atashkin AV, Enemark JH (2013) Coord Chem Rev 257:110–118

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Astashkin AV, Johnson-Winters K, Klein EL, Feng CJ, Wilson HL, Rajagopalan KV, Raitsimring AK, Enemark JH (2008) J Am Chem Soc 130:8471–8480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Thapper A, Deeth RJ, Nordlander E (1999) Inorg Chem 38:1015–1018

    Article  PubMed  CAS  Google Scholar 

  25. Peariso K, McNaughton RL, Kirk M (2002) J Am Chem Soc 124:9006–9007

    Article  PubMed  CAS  Google Scholar 

  26. Majumdar A, Sarkar S (2011) Coord Chem Rev 255:1039–1054

    Article  CAS  Google Scholar 

  27. Hernandez-Marin E, Ziegler T (2009) Inorg Chem 48:1323–1333

    Article  PubMed  CAS  Google Scholar 

  28. Siegbahn PEM, Borowski T (2006) Acc Chem Res 39:729–738

    Article  PubMed  CAS  Google Scholar 

  29. Siegbahn PEM, Himo F (2009) J Biol Inorg Chem 14:643–651

    Article  PubMed  CAS  Google Scholar 

  30. Li J-L, Mata RA, Ryde U (2013) J Chem Theory Comput 9:1799–1807

    Article  CAS  Google Scholar 

  31. Liao R-Z, Thiel W (2012) J Chem Theory Comput 8:3793–3803

    Article  CAS  Google Scholar 

  32. Liao R-Z, Thiel W (2013) J Comput Chem 34:2389–2397

    PubMed  CAS  Google Scholar 

  33. Startk JG, Wallace HG (1982) Chemistry data book, p 74

  34. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  PubMed  Google Scholar 

  35. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  PubMed  CAS  Google Scholar 

  36. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283–290

    Article  CAS  Google Scholar 

  37. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–126

    Article  CAS  Google Scholar 

  38. Rappoport D, Furche F (2010) J Chem Phys 133:134105

    Article  PubMed  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  41. Klamt A, Schüürmann J (1993) J Chem Soc Perkin Trans 2(5):799–805

    Article  Google Scholar 

  42. Schäfer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F (2000) Phys Chem Chem Phys 2:2187–2193

    Article  Google Scholar 

  43. Klamt A, Jonas V, Bürger T, Lohrenz JCW (1998) J Phys Chem 102:5074

    Article  CAS  Google Scholar 

  44. Sharp KA (1990) Annu Rev Biophys Biophys Chem 19:301

    Article  PubMed  CAS  Google Scholar 

  45. Honig B (1995) Science 268:1144

    Article  PubMed  CAS  Google Scholar 

  46. Treutler O, Ahlrichs R (1995) J Chem Phys 102:346–354

    Article  CAS  Google Scholar 

  47. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

  48. http://toc.uni-muenster.de/DFTD3/getd3.html. Accessed 18 June 2013

  49. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  CAS  Google Scholar 

  50. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  PubMed  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA Gaussian 03, revision D.01. Gaussian Inc., Wallingford

  52. Ryde U, Mata RA, Grimme S (2011) Dalton Trans 40:11176–11183

    Article  PubMed  CAS  Google Scholar 

  53. Schütz M, Hetzer G, Werner H-J (1999) J Chem Phys 111:5691

    Article  Google Scholar 

  54. Hampel C, Werner H-J (1996) J Chem Phys 104:6286

    Article  CAS  Google Scholar 

  55. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  56. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  57. Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101

    Article  PubMed  Google Scholar 

  58. Polly R, Werner H-J, Manby FR, Knowles PJ (2004) Mol Phys 102:2311

    Article  CAS  Google Scholar 

  59. Werner H-J, Manby FR, Knowles PJ (2003) J Chem Phys 118:8149

    Article  CAS  Google Scholar 

  60. Weigend F (2002) Phys Chem Chem Phys 4:4285

    Article  CAS  Google Scholar 

  61. Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175

    Article  CAS  Google Scholar 

  62. Weigend F (2007) J Comput Chem 29:167

    Article  Google Scholar 

  63. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143

    Article  CAS  Google Scholar 

  64. Pipek J, Mezey PG (1989) J Chem Phys 90:4916–4926

    Article  CAS  Google Scholar 

  65. Mata RA, Werner H-J (2007) Mol Phys 105:2753–2761

    Article  CAS  Google Scholar 

  66. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M et al (2012) Molpro, version 2012.1, a package of ab initio programs. see http://www.molpro.net

  67. Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639

    Article  CAS  Google Scholar 

  68. Harris HH, George GN, Rajagopalan KV (2006) Inorg Chem 45:493–494

    Article  PubMed  CAS  Google Scholar 

  69. Amzel LM (1997) Proteins Struct Funct Genet 28:144

    Article  PubMed  CAS  Google Scholar 

  70. Rulíšek L, Jensen KP, Lundgren K, Ryde U (2006) J Comput Chem 27:1398–1414

    Article  PubMed  Google Scholar 

  71. Irudayam SJ, Henchman RH (2009) J Phys Chem B 113:5871–5884

    Article  PubMed  CAS  Google Scholar 

  72. Schutz CN, Warshel A (2001) Proteins 44:400–417

    Article  PubMed  CAS  Google Scholar 

  73. Ryde U (1996) Eur Biophys J 24:213–221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation has been supported by grants from the Swedish research council (project 2010-5025), from the Swedish Institute, the Crafoord Foundation, the National Basic Research Program of China (973 Program, 2012CB932800), the National Natural Science Foundation of China (NSFC 21103064), and from COST through Action CM1003. It has also been supported by computer resources of Lunarc at Lund University. The collaboration between the Universities of Lund and Göttingen has been carried out within the framework of the International Research Training Group “Metal Sites in Biomolecules—Structures, Regulation, Mechanisms” and M. A. is supported through a Ph.D. scholarship in this International Research Training Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Ryde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Severen, MC., Andrejić, M., Li, J. et al. A quantum-mechanical study of the reaction mechanism of sulfite oxidase. J Biol Inorg Chem 19, 1165–1179 (2014). https://doi.org/10.1007/s00775-014-1172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1172-z

Keywords

Navigation