Skip to main content
Log in

Trace element complexation by humic substances: issues related to quality assurance

  • General Paper
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

Despite the amount of data available and the effort that has been put into studying the binding of trace elements by humic substances, there is still a significant amount of uncertainty surrounding the validity and applicability of the existing values in solving particular problems in the environmental, toxicity and industrial fields. This paper discusses the problems associated with the characterisation of humic binding and proposes a general approach for quality assessing trace element-humic substances complexation data, which includes the normalisation of raw experimental data prior to any data treatment (modelling).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Filella M (2007) Colloidal properties of submicron particles in natural waters. In: Wilkinson KW, Lead J (eds) Environmental colloids and particles. Behaviour, separation and characterisation, IUPAC-Wiley, pp 17–93

  2. http://ihss.gatech.edu/ihss2/. Last accessed 18 Oct 2010

  3. Filella M (2009) Freshwaters: which NOM matters? Environ Chem Lett 7:21–35

    Article  CAS  Google Scholar 

  4. Tipping E (2002) Cation binding by humic substances. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Koopal LK, Saito T, Pinheiro JP, van Riemsdijk WH (2005) Ion binding to natural organic matter: general considerations and the NICA-Donnan model. Coll Surf A 265:40–54

    Article  CAS  Google Scholar 

  6. Humic-Metal Binding Constants Database, IUPAC project 2008-025-1-500

  7. Coleman NT, McClung AC, Moore DP (1956) Formation constants for Cu(II)-peat complexes. Science 123:330–331

    Article  CAS  Google Scholar 

  8. Himes FL, Barber SA (1957) Chelating ability of soil organic matter. Soil Sci Soc Am Proc 21:368–373

    Article  CAS  Google Scholar 

  9. http://www.epa.gov/ceampubl/mmedia/minteq/. Last accessed 18 Oct 2010

  10. http://windermere.ceh.ac.uk/aquatic_processes/wham/index.html. Last accessed 18 Oct 2010

  11. http://www.soq.wur.nl/UK/Research/ECOSAT/. Last accessed 18 Oct 2010

  12. Filella M, May PM (2010) Chemical modelling of multicomponent mixtures: why quality assurance encompasses more than pure equilibrium data quality assessment and how it can be achieved. Accred Qual Assur. doi:10.1007/s00769-010-0701-x

  13. Ritchie JD, Perdue EM (2003) Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim Cosmochim Acta 67:85–96

    Article  CAS  Google Scholar 

  14. Thurman EM (1985) Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

    Google Scholar 

  15. Duffus JF (2002) “Heavy metals”—a meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  16. Filella M, Town RM, Buffle J (2002) Speciation in freshwaters. In: Ure AM, Davidson CM (eds) Chemical speciation in the environment, 2nd edn. Blackwell, Oxford, pp 188–236

    Chapter  Google Scholar 

  17. Gamble DS, Underdown AW, Langford CH (1980) Copper(II) titration of fulvic acid ligand sites with theoretical, potentiometric, and spectrophotometric analysis. Anal Chem 52:1901–1908

    Article  CAS  Google Scholar 

  18. Buffle J, Altmann RS (1987) Interpretation of metal complexation by heterogeneous complexants. In: Stumm W (ed) Aquatic surface chemistry: chemical processes at the particle-water interface. Wiley, New York, pp 351–383

    Google Scholar 

  19. Buffle J (1988) Complexation reactions in aquatic systems. An analytical approach. Ellis Horwood, Chichester

    Google Scholar 

  20. Hummel W, Glaus MA, Van Loon LR (1999) Complexation of radionuclides with humic substance: the metal concentration effect. Radiochim Acta 84:111–114

    CAS  Google Scholar 

  21. Altmann RS, Buffle J (1988) The use of differential equilibrium functions for interpretation of metal binding in complex ligand systems: its relation to site occupation and site affinity distributions. Geochim Cosmochim Acta 52:1505–1519

    Article  CAS  Google Scholar 

  22. Filella M (2008) NOM site binding heterogeneity in natural waters: discrete approaches. J Mol Liquids 143:42–51

    Article  CAS  Google Scholar 

  23. Buffle J, Filella M (1995) Physico-chemical heterogeneity of natural complexants: clarification. Anal Chim Acta 313:144–150

    Article  CAS  Google Scholar 

  24. Hummel W (1997) Binding models for humic substances. In: Grenthe I, Puigdomenech I (eds) Modelling in aquatic chemistry. Nuclear Energy Agency, Paris, pp 153–206

    Google Scholar 

  25. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the Earth Sciences. Science 263:641–645

    Article  CAS  Google Scholar 

  26. Filella M (2010) Quantifying ‘humics’ in freshwaters: purpose and methods. Chem Ecol 26:177–186

    Google Scholar 

  27. Nordstrom DK (1993) EOS Trans Am Geophys Union Suppl April 20 326

  28. Tipping E, Hurley MA (1992) A unifying model of cation binding by humic substances. Geochim Cosmochim Acta 56:3627–3641

    Article  CAS  Google Scholar 

  29. Hummel W, Glaus MA, Van Loon LR (2000) Trace metal-humate interactions. II. The “conservative roof” model and its application. Appl Geochem 15:975–1001

    Article  CAS  Google Scholar 

  30. www.epa.gov/waterscience/standards/academy/special/blm/index.html. Last accessed 18 Oct 2010

  31. Buffle J, Altmann RS, Filella M, Tessier A (1990) Complexation by natural heterogeneous compounds: site occupation distribution functions, a normalized description of metal complexation. Geochim Cosmochim Acta 54:1535–1553

    Article  CAS  Google Scholar 

  32. Buffle J, Altmann RS, Filella M (1990) The effect of physico-chemical heterogeneity of natural complexants. II. The buffering action and role of their background sites. Anal Chim Acta 232:225–237

    Article  CAS  Google Scholar 

  33. Benedetti MF, Milne CJ, Kinniburgh DG, van Riemsdijk WH, Koopal LK (1995) Metal ion binding to humic substances: application of the non-ideal competitive adsorption model. Environ Sci Technol 29:446–457

    Article  CAS  Google Scholar 

  34. Carlsen L, Bo P, Larsen G (1984) Radionuclide-humic acid interactions studied by dialysis. In: Barney GS, Navratil JD, Schulz WW (eds) Geochemical behavior of disposed radioactive waste. American Chemical Society, Washington, DC, pp 167–180

    Chapter  Google Scholar 

  35. Caceci MS (1985) The interaction of humic acid with europium(III). Complexation strength as a function of load and pH. Radiochim Acta 39:51–56

    CAS  Google Scholar 

  36. Bidoglio G, Grenthe I, Qi P, Robouch P, Omenetto N (1991) Complexation of europium and terbium with fulvic acids as studied by time-resolved laser-induced fluorescence. Talanta 38:999–1008

    Article  CAS  Google Scholar 

  37. Glaus MA, Hummel W, Van Loon LR (1997) Experimental determination and modeling of trace metal-humate interactions: a pragmatic approach for applications in groundwater. PSI Report No. 97-13, Paul Scherrer Institute, Villigen, Switzerland. Also published as Nagra Technical Report NTB 97-03, Nagra, Wettingen, Switzerland

  38. Kim JI, Buckau G, Bryant E, Klenze R (1989) Complexation of americium(III) with humic acid. Radiochim Acta 48:135–143

    CAS  Google Scholar 

  39. Kim JI, Rhee DS, Wimmer H, Buckau G, Klenze R (1993) Complexation of trivalent actinide ions (Am3+, Cm3+) with humic acid: a comparison of different experimental methods. Radiochim Acta 62:35–43

    CAS  Google Scholar 

  40. Moulin V, Tits J, Moulin C, Decambox P, Mauchien P, de Ruty O (1992) Complexation behaviour of humic substances towards actinides and lanthanides studied by time-resolved laser-induced spectrofluorometry. Radiochim Acta 58/59:121–128

    Google Scholar 

  41. Ellison SLR, Rosslein M, Williams A (eds) (2000) Quantifying uncertainty in analytical measurement. 2 edn. EURACHEM/CITAC Guide CG 4

  42. Braibanti A, Ostacoli G, Paoletti P, Pettit LD, Sammartano S (1987) Recommended procedure for testing the potentiometric apparatus and technique for the pH-metric measurement of metal-complex equilibrium constants. Pure Appl Chem 59:1721–1728

    Article  CAS  Google Scholar 

  43. Tuck DG (1989) A proposal for the use of a standard format for the publication of stability constant measurements. Pure Appl Chem 61:1161–1163

    Article  CAS  Google Scholar 

  44. Filella M, May PM (2005) Reflections on the calculation and publication of potentiometrically determined formation constants. Talanta 65:1221–1225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Filella.

Additional information

This article is part of the Topical Issue “Quality Assurance of Thermodynamic Data”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filella, M., Hummel, W. Trace element complexation by humic substances: issues related to quality assurance. Accred Qual Assur 16, 215–223 (2011). https://doi.org/10.1007/s00769-010-0716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-010-0716-3

Keywords

Navigation