Skip to main content
Log in

Novel thiol- and thioether-containing amino acids: cystathionine and homocysteine families

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Natural l-homocysteine and l,l-cystathionine, along with a series of unnatural analogues, have been prepared from l-aspartic and l-glutamic acid. Manipulation of the protected derivatives provided ω-iodoamino acids, which were used in thioalkylation reactions of sulfur nucleophiles, such as the ester of l-cysteine and potassium thioacetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

Abbreviations

All:

Allyl

Bn:

Benzyl

Boc:

tert-Butoxycarbonyl

Cth:

Cystathionine

Hcy:

Homocysteine

DCC:

N,N′-Dicyclohexylcarbodiimide

Fm:

9-Fluorenylmethyl

Fmoc:

9-Fluorenylmethoxycarbonyl

HOBt:

1-Hydroxybenzotriazole

ImH:

Imidazole

NMM:

N-Methylmorpholine

Nva:

Norvaline

Pg:

Protecting group

SPPS:

Solid-phase peptide synthesis

THF:

Tetrahydrofurane

TPP:

Triphenylphosphine

References

  • Bolognese A, Fierro O, Guarino D, Longobardo L, Caputo R (2006) One-pot synthesis of orthogonally protected enantiopure S-(aminoalkyl)-cysteine derivatives. Eur J Org Chem 1:169–173

    Article  Google Scholar 

  • Caputo R, Longobardo L (2007) Enantiopure β3-amino acids-2,2–d2 via homologation of proteinogenic α-amino acids. Amino Acids 32:401–404

    Article  PubMed  CAS  Google Scholar 

  • Caputo R, Cassano E, Longobardo L, Palumbo G (1995a) Chiral N-protected β-iodoamines from α-amino acids: a general synthesis. Tetrahedron Lett 36:167–168

    Article  CAS  Google Scholar 

  • Caputo R, Cassano E, Longobardo L, Palumbo G (1995b) Synthesis of enantiopure N-and C-protected homo-β-amino acids by direct homologation of α-amino acids. Tetrahedron 51:12337–12350

    Article  CAS  Google Scholar 

  • Caputo R, Capone S, DellaGreca M, Longobardo L, Pinto G (2007) Novel selenium-containing non-natural diamino acids. Tetrahedron Lett 48:1425–1427

    Article  CAS  Google Scholar 

  • Caputo R, DellaGreca M, de Paola I, Mastroianni D, Longobardo L (2010) Novel sulfur and selenium containing bis-α-amino acids from 4-hydroxyproline. Amino Acids 38:305–310

    Article  PubMed  CAS  Google Scholar 

  • Dekan Z, Vetter I, Daly NL, Craik DJ, Lewis RJ, Alewood PF (2011) α-Conotoxin ImI incorporating stable cystathionine bridges maintains full potency and identical three-dimensional structure. J Am Chem Soc 133:15866–15869

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein JD, Martin JJ (1984) Methionine metabolism in mammals. J Biol Chem 259:9508–9513

    PubMed  CAS  Google Scholar 

  • Frimpter GW (1965) Cystathioninuria: nature of the defect. Science 149:1095–1096

    Article  PubMed  CAS  Google Scholar 

  • Galande AK, Trent JO, Spatola AF (2003) Understanding base-assisted desulfurization using a variety of disulfide-bridged peptides. Biopolymers (Peptide Sci) 71:534–551

    Article  CAS  Google Scholar 

  • Jones DS, Gamino CA, Randow ME, Victoria EJ, Yu L, Coutts SM (1998) Synthesis of a cyclic-thioether peptide which binds anti-cardiolipin antibodies. Tetrahedron Lett 39:6107–6110

    Article  CAS  Google Scholar 

  • Kanzaki H, Kobayashi M, Nagasawa T, Yamada H (1987) Production of l-cystathionine using bacterial cystathionine γ-synthase. Appl Microbiol Biotechnol 25:322–326

    Article  CAS  Google Scholar 

  • Khalaf JK, VanderVelde DG, Datta A (2008) Synthetic studies on ezomycins: stereoselective route to a thymine octosyl nucleoside derivative. J Org Chem 73:5977–5984

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Gore VK (2000) Synthesis of the ezomycin nucleoside disaccharide. Org Lett 2:1391–1393

    Article  PubMed  CAS  Google Scholar 

  • Knerr PJ, Tzekou A, Ricklin D, Qu H, Chen H, van der Donk WA, Lambris JD (2011) Synthesis and activity of thioether-containing analogues of the complement inhibitor Compstatin. ACS Chem Biol 6:753–760

    Article  PubMed  CAS  Google Scholar 

  • Kokotos G (1990) A convenient one-pot conversion of N-protected amino acids and peptides into alcohols. Synthesis 299–301

  • Kondo Y (1962) The cystathionine pathway in the silkworm larva, Bombyx mori. J Biochem 51:188–192

    PubMed  CAS  Google Scholar 

  • Koseki Y, Yamada H, Usuki T (2011) Efficient synthesis of benzyl 2-(S)-[(tert-butoxycarbonyl) amino]-ω-iodoalkanoates. Tetrahedron Asymmetry 22:580–586

    Article  CAS  Google Scholar 

  • Mason JB (2003) Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 133:941S–9417S

    PubMed  CAS  Google Scholar 

  • Mayer JP, Heil JR, Zhang J, Munson MC (1995) An alternative solid-phase approach to C1-oxytocin. Tetrahedron Lett 36:7387–7390

    Article  CAS  Google Scholar 

  • Nigam SN, McConnell WB (1972) Isolation and identification of l-cystathionine and l-selenocystathionine from the foliage of Astragalus pectinatus. Phytochemistry 11:377–380

    Article  CAS  Google Scholar 

  • Perrey DA, Uckun FM (2001) An improved method for cysteine alkylation. Tetrahedron Lett 42:1859–1861

    Article  CAS  Google Scholar 

  • Rajagopal D, Eckhardt M, Furlong M, Knoess HP, Berger S, Knochel P (1994) Preparation and reactivity of chiral related configurationally stable zinc organometallics. Tetrahedron 50:2415–2432

    Article  Google Scholar 

  • Salvatore RN, Smith RA, Nischwitza AK, Terrence GT (2005) A mild and highly convenient chemoselective alkylation of thiols using Cs2CO3–TBAI. Tetrahedron Lett 46:8931–8935

    Article  CAS  Google Scholar 

  • Shiraiwa T, Nakagawa K, Kanemoto N, Kinda T, Yamamoto H (2002) Synthesis of optically active homocysteine from methionine and its use in preparing four stereoisomers of cystathionine. Chem Pharm Bull 50:1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Tabor AB (2011) The challenge of the lantibiotics: synthetic approaches to thioether-bridged peptides. Org Biomol Chem 9:7606–7628

    Article  PubMed  CAS  Google Scholar 

  • Townsend DM, Tew KD, Tapiero H (2004) Sulfur containing amino acids and human disease. Biomed Pharmacother 58:47–55

    Article  PubMed  CAS  Google Scholar 

  • Włostowski M, Czarnocka S, Maciejewski P (2010) Efficient S-alkylation of cysteine in the presence of 1,1,3,3-tetramethylguanidine. Tetrahedron Lett 51:5977–5979

    Article  Google Scholar 

  • Yamagata S, Akamatsu T, Iwama T (2004) Immobilization of Saccharomyces cerevisiae cystathionine γ-lyase and application of the product to cystathionine synthesis. Appl Environ Microbiol 70:3766–3768

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Schmidt RR (2003) Efficient synthesis of differently protected lanthionines via β-bromoalanine derivatives. Eur J Org Chem 4069–4072

Download references

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Longobardo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5031 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longobardo, L., Cecere, N., DellaGreca, M. et al. Novel thiol- and thioether-containing amino acids: cystathionine and homocysteine families. Amino Acids 44, 443–448 (2013). https://doi.org/10.1007/s00726-012-1352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1352-5

Keywords

Navigation