Archives of Virology

, Volume 153, Issue 8, pp 1621–1629 | Cite as

Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments

  • Jelle Matthijnssens
  • Max Ciarlet
  • Mustafizur Rahman
  • Houssam Attoui
  • Krisztián Bányai
  • Mary K. Estes
  • Jon R. Gentsch
  • Miren Iturriza-Gómara
  • Carl D. Kirkwood
  • Vito Martella
  • Peter P. C. Mertens
  • Osamu Nakagomi
  • John T. Patton
  • Franco M. Ruggeri
  • Linda J. Saif
  • Norma Santos
  • Andrej Steyer
  • Koki Taniguchi
  • Ulrich Desselberger
  • Marc Van Ranst
Virology Division News


Recently, a classification system was proposed for rotaviruses in which all the 11 genomic RNA segments are used (Matthijnssens et al. in J Virol 82:3204–3219, 2008). Based on nucleotide identity cut-off percentages, different genotypes were defined for each genome segment. A nomenclature for the comparison of complete rotavirus genomes was considered in which the notations Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx are used for the VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 encoding genes, respectively. This classification system is an extension of the previously applied genotype-based system which made use of the rotavirus gene segments encoding VP4, VP7, VP6, and NSP4. In order to assign rotavirus strains to one of the established genotypes or a new genotype, a standard procedure is proposed in this report. As more human and animal rotavirus genomes will be completely sequenced, new genotypes for each of the 11 gene segments may be identified. A Rotavirus Classification Working Group (RCWG) including specialists in molecular virology, infectious diseases, epidemiology, and public health was formed, which can assist in the appropriate delineation of new genotypes, thus avoiding duplications and helping minimize errors. Scientists discovering a potentially new rotavirus genotype for any of the 11 gene segments are invited to send the novel sequence to the RCWG, where the sequence will be analyzed, and a new nomenclature will be advised as appropriate. The RCWG will update the list of classified strains regularly and make this accessible on a website. Close collaboration with the Study Group Reoviridae of the International Committee on the Taxonomy of Viruses will be maintained.


Genome Segment Open Read Frame Sequence Reassortment Event Cognate Gene NSP4 Genotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank all the colleagues of the Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Belgium, for their helpful comments and discussions. J.M. was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen). JTP was supported by the Intramural Research Program of the NIH, National Institutes of Health, USA. CDK is supported by a National Health and Medical Research Council (NHMRC) RD Wright Research Fellowship (334364).


  1. 1.
    Ball LA (2005) The universal taxonomy of viruses in theory and practice. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: eight report of the International Committee on Taxonomy of Viruses. Elsevier, Academic Press, Amsterdam, Holland, pp 3–8Google Scholar
  2. 2.
    Banerjee I, Iturriza-Gómara M, Rajendran P, Primrose B, Ramani S, Gray JJ, Brown DW, Kang G (2007) Molecular characterization of G11P[25] and G3P[3] human rotavirus strains associated with asymptomatic infection in South India. J Med Virol 79:1768–1774PubMedCrossRefGoogle Scholar
  3. 3.
    Ciarlet M, Liprandi F, Conner ME, Estes MK (2000) Species specificity and interspecies relatedness of NSP4 genetic groups by comparative NSP4 sequence analyses of animal rotaviruses. Arch Virol 145:371–383PubMedCrossRefGoogle Scholar
  4. 4.
    Ciarlet M, Estes M (2002) Rotaviruses: basic biology, epidemiology and methodologies. In: Britton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 2573–2773Google Scholar
  5. 5.
    Cunliffe NA, Woods PA, Leite JP, Das BK, Ramachandran M, Bhan MK, Hart CA, Glass RI, Gentsch JR (1997) Sequence analysis of NSP4 gene of human rotavirus allows classification into two main genetic groups. J Med Virol 53:41–50PubMedCrossRefGoogle Scholar
  6. 6.
    de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27PubMedCrossRefGoogle Scholar
  7. 7.
    Desselberger U, Wolleswinkel-van den Bosch J, Mrukowicz J, Rodrigo C, Giaquinto C, Vesikari T (2006) Rotavirus types in Europe and their significance for vaccination. Pediatr Infect Dis J 25:S30–41PubMedCrossRefGoogle Scholar
  8. 8.
    Estes M, Kapikian A (2007) Rotaviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology, 5th edn. Kluwer Health/Lippincott, Williams and Wilkins, Philadelphia, pp 1917–1974Google Scholar
  9. 9.
    Gentsch JR, Laird AR, Bielfelt B, Griffin DD, Bányai K, Ramachandran M, Jain V, Cunliffe NA, Nakagomi O, Kirkwood CD, Fischer TK, Parashar UD, Bresee JS, Jiang B, Glass RI (2005) Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J Infect Dis 192(Suppl 1):S146–159PubMedCrossRefGoogle Scholar
  10. 10.
    Graham DY, Estes MK (1985) Proposed working serologic classification system for rotaviruses. Annales de l’Institut Pasteur de Virologie 136:5–12CrossRefGoogle Scholar
  11. 11.
    Horie Y, Masamune O, Nakagomi O (1997) Three major alleles of rotavirus NSP4 proteins identified by sequence analysis. J Gen Virol 78:2341–2346PubMedGoogle Scholar
  12. 12.
    Ito H, Sugiyama M, Masubuchi K, Mori Y, Minamoto N (2001) Complete nucleotide sequence of a group A avian rotavirus genome and a comparison with its counterparts of mammalian rotaviruses. Virus Res 75:123–138PubMedCrossRefGoogle Scholar
  13. 13.
    Iturriza Gómara M, Wong C, Blome S, Desselberger U, Gray J (2002) Molecular characterization of VP6 genes of human rotavirus isolates: correlation of genogroups with subgroups and evidence of independent segregation. J Virol 76:6596–6601PubMedCrossRefGoogle Scholar
  14. 14.
    Khamrin P, Maneekarn N, Peerakome S, Yagyu F, Okitsu S, Ushijima H (2006) Molecular characterization of a rare G3P[3] human rotavirus reassortant strain reveals evidence for multiple human-animal interspecies transmissions. J Med Virol 78:986–994PubMedCrossRefGoogle Scholar
  15. 15.
    Kirkwood CD, Palombo EA (1997) Genetic characterization of the rotavirus nonstructural protein, NSP4. Virology 236:258–265PubMedCrossRefGoogle Scholar
  16. 16.
    Li DD, Duan ZJ, Zhang Q, Liu N, Xie ZP, Jiang B, Steele D, Jiang X, Wang ZS, Fang ZY (2008) Molecular characterization of unusual human G5P[6] rotaviruses identified in China. J Clin Virol 42:141–148PubMedCrossRefGoogle Scholar
  17. 17.
    Matthijnssens J, Rahman M, Martella V, Xuelei Y, De Vos S, De Leener K, Ciarlet M, Buonavoglia C, Van Ranst M (2006) Full genomic analysis of human rotavirus strain B4106 and lapine rotavirus strain 30/96 provides evidence for interspecies transmission. J Virol 80:3801–3810PubMedCrossRefGoogle Scholar
  18. 18.
    Matthijnssens J, Rahman M, Yang X, Delbeke T, Arijs I, Kabue JP, Muyembe JJ, Van Ranst M (2006) G8 rotavirus strains isolated in the Democratic Republic of Congo belong to the DS-1-like genogroup. J Clin Microbiol 44:1801–1809PubMedCrossRefGoogle Scholar
  19. 19.
    Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo AE, Iturriza-Gómara M, Maes P, Patton JT, Rahman M, Van Ranst M (2008) Full genome-based classification of rotaviruses reveals common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82:3204–3219PubMedCrossRefGoogle Scholar
  20. 20.
    Maunula L, Von Bonsdorff CH (2002) Frequent reassortments may explain the genetic heterogeneity of rotaviruses: analysis of Finnish rotavirus strains. J Virol 76:11793–11800PubMedCrossRefGoogle Scholar
  21. 21.
    Mertens PPC, Duncan R, Attoui H, Dermody TS (2005) Reoviridae. In: Fauquet C, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: eight report of the International Committee on Taxonomy of Viruses. Elsevier, Amsterdam, pp 447–560Google Scholar
  22. 22.
    Mori Y, Borgan MA, Ito N, Sugiyama M, Minamoto N (2002) Sequential analysis of nonstructural protein NSP4s derived from Group A avian rotaviruses. Virus Res 89:145–151PubMedCrossRefGoogle Scholar
  23. 23.
    Nakagomi O, Nakagomi T, Akatani K, Ikegami N (1989) Identification of rotavirus genogroups by RNA–RNA hybridization. Mol Cell Probes 3:251–261PubMedCrossRefGoogle Scholar
  24. 24.
    Nakagomi O, Nakagomi T (1991) Genetic diversity and similarity among mammalian rotaviruses in relation to interspecies transmission of rotavirus. Arch Virol 120:43–55PubMedCrossRefGoogle Scholar
  25. 25.
    Nakagomi T, Horie Y, Koshimura Y, Greenberg HB, Nakagomi O (1999) Isolation of a human rotavirus strain with a super-short RNA pattern and a new P2 subtype. J Clin Microbiol 37:1213–1216PubMedGoogle Scholar
  26. 26.
    Noel JS, Lee TW, Kurtz JB, Glass RI, Monroe SS (1995) Typing of human astroviruses from clinical isolates by enzyme immunoassay and nucleotide sequencing. J Clin Microbiol 33:797–801PubMedGoogle Scholar
  27. 27.
    Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI (2003) Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis 9:565–572PubMedGoogle Scholar
  28. 28.
    Parashar UD, Gibson CJ, Bresse JS, Glass RI (2006) Rotavirus and severe childhood diarrhea. Emerg Infect Dis 12:304–306PubMedGoogle Scholar
  29. 29.
    Park SH, Saif LJ, Jeong C, Lim GK, Park SI, Kim HH, Park SJ, Kim YJ, Jeong JH, Kang MI, Cho KO (2006) Molecular characterization of novel G5 bovine rotavirus strains. J Clin Microbiol 44:4101–4112PubMedCrossRefGoogle Scholar
  30. 30.
    Parra GI, Bok K, Martinez M, Gomez JA (2004) Evidence of rotavirus intragenic recombination between two sublineages of the same genotype. J Gen Virol 85:1713–1716PubMedCrossRefGoogle Scholar
  31. 31.
    Phan TG, Okitsu S, Maneekarn N, Ushijima H (2007) Genetic heterogeneity, evolution and recombination in emerging G9 rotaviruses. Infect Genet Evol 7:656–663PubMedCrossRefGoogle Scholar
  32. 32.
    Phan TG, Okitsu S, Maneekarn N, Ushijima H (2007) Evidence of intragenic recombination in G1 rotavirus VP7 genes. J Virol 81:10188–10194PubMedCrossRefGoogle Scholar
  33. 33.
    Rahman M, Matthijnssens J, Nahar S, Podder G, Sack DA, Azim T, Van Ranst M (2005) Characterization of a novel P[25], G11 human group a rotavirus. J Clin Microbiol 43:3208–3212PubMedCrossRefGoogle Scholar
  34. 34.
    Rahman M, Matthijnssens J, Yang X, Delbeke T, Arijs I, Taniguchi K, Iturriza-Gómara M, Iftekharuddin N, Azim T, Van Ranst M (2007) Evolutionary history and global spread of the emerging g12 human rotaviruses. J Virol 81:2382–2390PubMedCrossRefGoogle Scholar
  35. 35.
    Ramig RF, Ciarlet M, Mertens PPC, Dermody TS (2005) Rotavirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: eight report of the International Committee on Taxonomy of Viruses. Elsevier, Amsterdam, pp 484–496Google Scholar
  36. 36.
    Santos N, Hoshino Y (2005) Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol 15:29–56PubMedCrossRefGoogle Scholar
  37. 37.
    Schuffenecker I, Ando T, Thouvenot D, Lina B, Aymard M (2001) Genetic classification of “Sapporo-like viruses”. Arch Virol 146:2115–2132PubMedCrossRefGoogle Scholar
  38. 38.
    Small C, Barro M, Brown TL, Patton JT (2007) Genome heterogeneity of SA11 rotavirus due to reassortment with “O” agent. Virology 359:415–424PubMedCrossRefGoogle Scholar
  39. 39.
    Soriano-Gabarro M, Mrukowicz J, Vesikari T, Verstraeten T (2006) Burden of rotavirus disease in European Union countries. Pediatr Infect Dis J 25:S7–S11PubMedCrossRefGoogle Scholar
  40. 40.
    Suzuki Y, Gojobori T, Nakagomi O (1998) Intragenic recombinations in rotaviruses. FEBS Lett 427:183–187PubMedCrossRefGoogle Scholar
  41. 41.
    Svensson L, Sheshberadaran H, Vesikari T, Norrby E, Wadell G (1987) Immune response to rotavirus polypeptides after vaccination with heterologous rotavirus vaccines (RIT 4237, RRV-1). J Gen Virol 68:1993–1999PubMedCrossRefGoogle Scholar
  42. 42.
    Zheng DP, Ando T, Fankhauser RL, Beard RS, Glass RI, Monroe SS (2006) Norovirus classification and proposed strain nomenclature. Virology 346:312–323PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jelle Matthijnssens
    • 1
  • Max Ciarlet
    • 2
  • Mustafizur Rahman
    • 1
    • 3
  • Houssam Attoui
    • 4
  • Krisztián Bányai
    • 5
  • Mary K. Estes
    • 6
  • Jon R. Gentsch
    • 7
  • Miren Iturriza-Gómara
    • 8
  • Carl D. Kirkwood
    • 9
  • Vito Martella
    • 10
  • Peter P. C. Mertens
    • 4
  • Osamu Nakagomi
    • 11
  • John T. Patton
    • 12
  • Franco M. Ruggeri
    • 13
  • Linda J. Saif
    • 14
  • Norma Santos
    • 15
  • Andrej Steyer
    • 16
  • Koki Taniguchi
    • 17
  • Ulrich Desselberger
    • 18
  • Marc Van Ranst
    • 1
  1. 1.Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical ResearchUniversity of LeuvenLeuvenBelgium
  2. 2.Vaccine and Biologics—Clinical ResearchMerck & Co., Inc.North WalesUSA
  3. 3.Laboratory of Virology, ICDDR,B: MohakhaliDhakaBangladesh
  4. 4.Department of ArbovirologyInstitute for Animal HealthPirbrightUK
  5. 5.Veterinary Medical Research InstituteHungarian Academy of SciencesBudapestHungary
  6. 6.Departments of Molecular Virology, Microbiology, Medicine—GIBaylor College of MedicineHoustonUSA
  7. 7.Division of Viral DiseasesCDC, National Center for Immunization and Respiratory DiseasesAtlantaUSA
  8. 8.Enteric Virus Unit, Virus Reference DepartmentCentre for Infection, Health Protection AgencyLondonUK
  9. 9.Enteric Virus GroupMurdoch Childrens Research Institute, Royal Children HospitalVictoriaAustralia
  10. 10.Department of Public Health and Animal SciencesUniversity of BariBariItaly
  11. 11.Department of Molecular Microbiology and ImmunologyNagasaki UniversityNagasakiJapan
  12. 12.Laboratory of Infectious DiseasesNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA
  13. 13.Dipartimento di Sanità alimentare e animaleIstituto Superiore di SanitàRomeItaly
  14. 14.Food Animal Health Research Program, Ohio Agricultural Research and Development CenterThe Ohio State UniversityOhioUSA
  15. 15.Instituto de Microbiologia—UFRJRio de JanerioBrazil
  16. 16.Faculty of Medicine, Institute of Microbiology and ImmunologyUniversity of LjubljanaLjubljanaSlovenia
  17. 17.Department of Virology and ParasitologyFujita Health University School of MedicineToyoakeJapan
  18. 18.Department of MedicineUniversity of CambridgeCambridgeUK

Personalised recommendations