Skip to main content

Advertisement

Log in

The warm season characteristics of the turbulence structure and transfer of turbulent kinetic energy over alpine wetlands at the source of the Yellow River

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This study focuses on the relationships between wind velocity, temperature, water vapour, CO2, and the stability parameters over an alpine wetland. The turbulence data collected by a suite of instruments in the Maduo wetland, which is located at the source of the Yellow River (from June to August 2014), were used to study the characteristics of turbulence transport, turbulence kinetic energy, humidity variance, temperature variance, CO2 variance, and turbulence intensity. The results show that the normalized standard deviation of the wind velocity components (σ u , σ v , and σ w ) generally satisfies a 1/3 power-law relation. The values of σ u,v,w /u * increase with increasing |(z − d)/L|. Moreover, the normalized standard deviation of the temperature, CO2, and water vapour is scatter under stable stratification at night. However, they increase as the absolute stability parameters decrease under unstable stratification. The results also indicate that the turbulent kinetic energy and turbulence intensity reach their peak values when the stability parameter is close to zero. When the wind velocity is less than 2 m/s, the turbulence intensities in the three directions decrease rapidly with increasing wind velocity. Moreover, the average value of C D (the overall momentum transfer coefficient) is significantly larger than those of C H (the sensible heat transfer coefficient) under different conditions. The bulk transport coefficient decreases as the stability increases. Finally, because of the high temperatures, the leaf stomata are nearly closed, and the pulse of the CO2 flux is very small at noon time. Meanwhile, the latent and sensible heat fluxes reach their maximum values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acevedo OC, Costa FD, Oliveira PES et al (2014) The influence of submeso processes on stable boundary layer similarity relationships. J Atmos Sci 71(1):207–225

    Article  Google Scholar 

  • Agarwal P, Yadav AK, Gulati A et al (1995) Surface layer turbulence processes in low wind speeds over land. Atmos Environ 29(16):2089–2098

    Article  Google Scholar 

  • Al-Jiboori MH, Xu Y, Qian Y (2001) Turbulence characteristics over complex terrain in West China. Bound Layer Meteorol 101(1):109–126

    Article  Google Scholar 

  • Andreas EL, Hicks BB (2002) Comments on ‘Critical test of the validity of Monin–Obukhov similarity during convective conditions’. J Atmos Sci 59(17):2605–2607

    Article  Google Scholar 

  • Bastiaanssen WGM, Menenti M, Feddes RA et al (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol 212–213(1–4):213–229

    Article  Google Scholar 

  • Bian LG, Lu LH, Cheng YJ (2001) Turbulent measurement over the southeastern Tibetan Plateau. Q J Appl Meteorol 12:1–13

    Google Scholar 

  • Bradley EF, Antonia RA, Chambers AJ (1981) Turbulence Reynolds number and the turbulent kinetic energy balance in the atmospheric surface layer. Bound Layer Meteorology 21(2):183–197

    Article  Google Scholar 

  • Brutsaert W (1973) Further comments on ‘radiation, evaporation and the maintenance of turbulence under stable conditions in the lower atmosphere’. Bound Layer Meteorol 3:394–396

    Article  Google Scholar 

  • Chen BL (2014) A study of land surface energy and water in soil freezing and thawing process and impact on regional climate of the Qinghai–Tibet Plateau (Doctor). Chinese Academy of Sciences, Beijing (Chinese)

    Google Scholar 

  • Chen YG, Zhang Y, Wang SY (2014) Seasonal variation of turbulence characteristics over Alpine meadow ecosystem. Plateau Meteorol 33:585–595 (Chinese)

    Google Scholar 

  • Dyer AJ, Bradley EF (1982) Flux-gradient relationship in the constant flux layer. Q J R Meteorol Soc 96:495–506

    Google Scholar 

  • Grachev AA, Bariteau L, Fairall CW et al (2011) Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006. J Geophys Res Atmos 116(D13):1016–1022

    Article  Google Scholar 

  • Grachev AA, Leo LS, Sabatino SD et al (2016) Structure of turbulence in Katabatic flows below and above the wind-speed maximum. Bound Layer Meteorol 159(3):469–494

    Article  Google Scholar 

  • Hamming RW (2006) Numerical methods for scientists and engineers/R.W. Hamming. Koleksi Buku Upt Perpustakaan Universitas Negeri Malang

  • Han C, Ma Y, Su Z, Chen X, Zhang L, Li M, Sun F (2015) Estimates of effective aerodynamic roughness length over mountainous areas of the Tibetan Plateau. Q J Roy Meteor Soc 141:1457–1465

    Article  Google Scholar 

  • Harlow FH, Welch JE (1965) Numerical calculation of Time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8(12):2182

    Article  Google Scholar 

  • Hicks BB (1978) Some limitations of dimensional analysis and power laws. Bound Layer Meteorol 14(4):567–569

    Article  Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Bound Layer Meteor 78:215–246

    Article  Google Scholar 

  • Johansson C, Smedman A-S, Högström U, Brasseur JG, Khanna S (2001) Critical test of the validity of Monin-Obukhov similarity during convective conditions. J Atmos Sci 58:1549–1566

    Article  Google Scholar 

  • Katul G, Goltz SM, Hsieh CI, Cheng Y, Mowry F, Sigmon J (1995) Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain. Bound Layer Meteorol 74:237–260

    Article  Google Scholar 

  • Klipp CL, Mahrt L (2004) Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 132(617):1375

    Article  Google Scholar 

  • Lagouarde JP, Mcaneney KJ (1992) Daily sensible heat flux estimation from a single measurement of surface temperature and maximum air temperature. Bound Layer Meteorol 59(4):341–362

    Article  Google Scholar 

  • Leuning R (2004) Measurements of trace gas fluxes in the atmosphere using eddy covariance: WPL corrections revisited. Handbook of Micrometeorology:119–132

  • Li GP, Duan TY, Gong YF (2002) A composite study of the surface fluxes on the Tibetan Plateau. Acta Meteorol Sin 60:453–459

    Google Scholar 

  • Li MS, Ma YM, Ma WQ, Hu Z, Ishikawa H, Su Z, Sun F (2006) Analysis of turbulence characteristics over the Northern Tibetan Plateau area. Adv Atmos Sci 23:579–585

    Article  Google Scholar 

  • Li Y, Li YQ, Zhao XB (2009) Analysis of turbulent characteristics in the surface layer in Litang region on the east edge of Tibetan Plateau. Plateau Meteorol 4:745–753 (Chinese)

    Google Scholar 

  • Li SS, Lv SH, Gao YH (2012) Analysis of the statistical characteristics of the turbulent data at Maqu area in the upper Yellow River. Adv Earth Sci 27:901–907

    Google Scholar 

  • Liu SH, Liu HP, Hong ZX (1996) The turbulence structure in the near-surface atmospheric layer over the Horqin Grassland. Chin J Atmos Sci 3:378–383 (Chinese)

    Google Scholar 

  • Ma YM, Ma WQ, Hu ZY, Li MS, Wang JM (2002) Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai–Xizang Plateau. Plateau Meteorol 21:514–517 (Chinese)

    Google Scholar 

  • Mahrt L (2009) Characteristics of Submeso winds in the stable boundary layer. Bound Layer Meteorol 130(1):1–14

    Article  Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delany T, Oncley S (1998) Nocturnal boundary layer regimes. Bound Layer Meteorol 88:255–278

    Article  Google Scholar 

  • Moraes OLL, Acevedo OC, Degrazia GA, Anfossi D, Silva RD, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39:3103–3112

    Article  Google Scholar 

  • Nadeau DF, Pardyjak ER, Higgins CW et al (2013) Similarity scaling over a steep Alpine Slope. Bound Layer Meteorol 147(3):401–419

    Article  Google Scholar 

  • Nordbo A, Järvi L, Haapanala S, Moilanen J, Vesala T (2013) Intra-city variation in urban morphology and turbulence structure in Helsinki, Finland. Bound Layer Meteorol 146:469–496

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, New York

    Google Scholar 

  • Panofsky HA, Tennekes H, Lenschow DH, Wyngaard JC (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound Layer Meteorol 11:355–361

    Article  Google Scholar 

  • Pawlak W, Fortuniak K, Siedlecki M et al (2016) Urban–Wetland contrast in turbulent exchange of methane. Atmos Environ 145:176–191

    Article  Google Scholar 

  • Pegahfar N, Bidokhti AA (2013) Similarity relations in a stable and relatively neutral surface layer in an urban area with complex topography (Tehran). Environ Fluid Mech 13(1):1–31

    Article  Google Scholar 

  • Qi YQ, Wang JM, Li J (1996) A study of turbulent transfer characteristics in Wu Daoliang area of Qinghai–Xizang Plateau. Plateau Meteorol 15:172–177 (Chinese)

    Google Scholar 

  • Quan L, Hu F (2009) Relationship between turbulent flux and variance in the urban canopy. Meteorol Atmos Phys 104:29–36

    Article  Google Scholar 

  • Rannik Ü (1998) On the surface layer similarity at a complex forest site. J Geophys Res Atmos 103:8685–8697

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, Bruin HARD (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound-Layer Meteorol 6(1):81–93

    Article  Google Scholar 

  • Shang LY, Lv SH, Zhang Y, Luo SQ (2011) Analysis on atmospheric surface layer turbulence characteristic during soil freezing and thawing seasons in Eastern Qinghai-Xizang Plateau. Plateau Meteorol 30:30–37 (Chinese)

    Google Scholar 

  • Shao Y, Hacker JM (1990) Local similarity relationships in a horizontally inhomogeneous boundary layer. Bound Layer Meteorol 52(1):17–40

    Article  Google Scholar 

  • Singha A, Sadr R (2012) Characteristics of surface layer turbulence in coastal area of Qatar. Environ Fluid Mech 12(6):515–531

    Article  Google Scholar 

  • Stiperski I, Rotach MW (2016) On the measurement of turbulence over complex mountainous terrain. Bound Layer Meteorol 159(1):1–25

    Article  Google Scholar 

  • Sun J, Hu ZY, Chen XL (2012) Comparative analysis on momentum bulk transfer coefficients and roughness length under the different underlying surfaces in upper and middle reaches of Heihe River Basin. Plateau Meteorol 31:920–926 (Chinese)

    Google Scholar 

  • Wang JM, Liu XH, Ma YM (1993) Turbulence structure and transfer characteristics in the surface layer of HEIFE Gobi area. Acta Meteorol Sin 3:343–350 (Chinese)

    Google Scholar 

  • Wang HJ, Jing L, Gao YX (2005) A simulation study on the shrunk wetland around Qinghai Lake and regional climate. Wetland Sci 3:83–97 (Chinese)

    Google Scholar 

  • Wang S, Yu Z, Lü S et al (2013) Estimation of turbulent fluxes using the flux-variance method over an alpine meadow surface in the eastern Tibetan Plateau. Adv Atmos Sci 30:411–424

    Article  Google Scholar 

  • Weaver HL (1990) Temperature and humidity flux variance relations determined by one dimensional eddy correlation. Bound Layer Meteorol 53:77–91

    Article  Google Scholar 

  • Wu H, Ye BS, Wu JK (2013) Analysis on turbulent feature of Alpine meadow in the upper reach of Shule River. Plateau Meteorol 32:368–376 (Chinese)

    Google Scholar 

  • Xu XD, Zhou MY, Chen JY (2001) Comprehensive physical image of the dynamic and thermal structure of the land-atmosphere process on the Qinghai Tibetan Plateau. Sci China 31:428–440

    Google Scholar 

  • Xu X, Zhou M, Chen J (2002) A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai–Xizang Plateau. Sci China 45:577–694

    Article  Google Scholar 

  • Yang Z, Liu JS, Zhu YW (2010) Analyses of turbulence characteristics in the surface layer at Dali of the western Yunnan–Guizhou Plateau. Trans Atmos Sci 33:117–124

    Google Scholar 

  • Yue P, Zhang Q, Zhao W (2015) Characteristics of turbulence transfer in surface layer over semi-arid grassland in Loess Plateau in summer. Plateau Meteorol 34:21–29 (Chinese)

    Google Scholar 

  • Zhu ZK, Ma YM, Li MS (2007) Diurnal and seasonal variations of the carbon dioxide over the Alpine meadow ecosystem on the northern slope of the Qomolangma. Plateau Meteorol 26:1300–1304 (Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41530529, 41505078, and 41405079) and the Key Research Program of the Chinese Academy of Sciences (KZZD-EW-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wen.

Additional information

Responsible Editor: S. T. Castelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, D., Wen, J., Ma, Y. et al. The warm season characteristics of the turbulence structure and transfer of turbulent kinetic energy over alpine wetlands at the source of the Yellow River. Meteorol Atmos Phys 130, 529–542 (2018). https://doi.org/10.1007/s00703-017-0534-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-017-0534-9

Navigation