Journal of Neural Transmission

, Volume 115, Issue 7, pp 1037–1046 | Cite as

MKC-231, a choline uptake enhancer: (3) mode of action of MKC-231 in the enhancement of high-affinity choline uptake

  • Ken Takashina
  • Tomoko Bessho
  • Reiko Mori
  • Kunji Kawai
  • Junichi Eguchi
  • Ken-Ichi Saito
Alzheimer's Disease and Related Disorders - Original Article


MKC-231, a putative cholinergic activity, is reported to improve learning and memory impaired in AF64A-treated animals. MKC-231 enhances high-affinity choline uptake (HACU) known as the rate-limiting step of acetylcholine (ACh) synthesis. We investigated the mode of action (MOA) of HACU enhancement by MKC-231. Intracerebroventricular (i.c.v.) injections of AF64A (3 nmol/brain) resulted in significant HACU reduction in hippocampal synaptosomes. Treatment with MKC-231 increased V max of HACU and B max of [3H]-HC-3 binding 1.6 and 1.7-fold, respectively. In studies of [3H]-MKC-231 binding and Biacore analysis, MKC-231 showed noticeable affinity for cloned high-affinity choline transporters (CHT1). The present study suggests that MKC-231 directly affects trafficking of CHT1 and increases the numbers of transporter, working for HACU, at the synaptic membrane.


MKC-231 AF64A High-affinity choline uptake (HACU) Acetyl choline HC-3 binding Choline transporter CHT1 


  1. Aarsland D, Mosimann UP, McKeith IG (2004) Role of cholinesterase inhibitors in Parkinson’s disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol 17:164–171PubMedCrossRefGoogle Scholar
  2. Abdiche YN, Myszka DG (2004) Probing the mechanism of drug/lipid membrane interactions using Biacore. Anal Biochem 328:233–243PubMedCrossRefGoogle Scholar
  3. Bessho T, Takashina K, Tabata R, Oshima C, Chaki H, Yamabe H, Egawa M, Tobe A, Saito K-I (1996) Effects of the novel high affinity choline uptake enhancer 2-(2-oxopyrrolidin-1-yl)-N-(2, 3-dimethyl-5, 6, 7, 8-tetrahydrofuro[2, 3-b]quinolin-4-yl) acetoamide on deficits of water maze learning in rats. Arzneimittelforschung 46:369–373PubMedGoogle Scholar
  4. Bessho T, Takashina K, Eguchi J, Komatsu T, Saito K-I (2008) MKC-231, a choline-uptake enhancer: (1) long-lasting cognitive improvement after repeated administration in AF64A-treated rats. J Neural Transm. doi: 10.1007/s00702-008-0053-4
  5. Chrobak JJ, Hanin I, Schmechel TJ, Walsh TJ (1988) AF64A-induced working memory impairment: behavioral, neurochemical and histological correlates. Brain Res 463:107–117PubMedCrossRefGoogle Scholar
  6. Collerton D (1986) Cholinergic function and intellectual decline in Alzheimer’s disease. Neuroscience 19:1–28PubMedCrossRefGoogle Scholar
  7. Cooper MA, Hansson A, Löfås S, Williams DH (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal Biochem 277:196–205PubMedCrossRefGoogle Scholar
  8. Ferguson SM, Savchenko V, Apparsundaram S, Zwick M, Wright J, Heilman CJ, Yi H, Levey AI, Blakely RD (2003) Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci 23:9697–9709PubMedGoogle Scholar
  9. Ferguson SM, Blakely RD (2004) The choline transporter resurfaces: new roles for synaptic vesicles? Mol Interv 4:22–37PubMedCrossRefGoogle Scholar
  10. Fisher A, Mantione CR, Abraham DJ, Hanin I (1982) Long-term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AF64A) in vivo. J Pharmacol Exp Ther 222:140–145PubMedGoogle Scholar
  11. Gower AJ, Rousseau D, Jamsin P, Gobert J, Hanin I, Wulfert E (1989) Behavioral and histological effects of low concentrations of intraventricular AF64A. Eur J Pharmacol 166:271–281PubMedCrossRefGoogle Scholar
  12. Guo Q, Fu W, Xie J, Luo H, Sells SF, Geddes JW, Bondada V, Rangnekar VM, Mattson MP (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat Med 4:957–962PubMedCrossRefGoogle Scholar
  13. Ivy MT, Newkirk RF, Karim MR, Mtshali CMP, Townsel JG (2001) Hemicholinium-3 mustard reveals two populations of cycling choline cotransporters in Limulus. Neuroscience 102:969–978PubMedCrossRefGoogle Scholar
  14. Jenden DJ, Jope RS, Weiler MH (1976) Regulation of acetylcholine synthesis: does cytoplasmic acetylcholine control high affinity choline uptake? Science 194:635–637PubMedCrossRefGoogle Scholar
  15. Krištofiková Z, Fales E, Majer E, Klaschka J (1995) (3H) Hemicholinium-3 binding sites in postmortem brains of human patients with Alzheimer’s disease and multi-infarct dementia. Exp Gerontol 30:125–136PubMedCrossRefGoogle Scholar
  16. Kuhar MJ, Murrin LC (1978) Sodium dependent, high affinity choline uptake. J Neurochem 30:15–21PubMedCrossRefGoogle Scholar
  17. Murai S, Saito H, Abe E, Masuda Y, Odashima J, Itoh T (1994) MKC-231, a choline uptake enhancer, ameliorates working memory deficits and decreased hippocampal acetylcholine induced by ethylcholine aziridinium ion in mice. J Neural Trasm 98:1–13CrossRefGoogle Scholar
  18. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New YorkGoogle Scholar
  19. Quirion R (1987) Characterization and autoradiographic distribution of hemicholinium-3 high-affinity choline uptake sites in mammalian brain. Synapse 1:293–303PubMedCrossRefGoogle Scholar
  20. Ribeiro FM, Alves-Silva J, Volknandt W, Martins-Silva C, Mahmud H, Wilhelm A, Gomez MV, Rylett RJ, Ferguson SSG, Prado VF, Prado MAM (2003) The hemicholinium-3 sensitive high affinity choline transport is internalized by clathrin-mediated endocytosis and is present in endosomes and synaptic vesicle. J Neurochem 87:136–146PubMedCrossRefGoogle Scholar
  21. Ribeiro FM, Black SAG, Cregan SP, Prado VF, Prado MAM, Rylett RJ, Ferguson SSG (2005) Constitutive high-affinity choline transporter endocytosis is determined by a carboxyl-terminal tail dileucine motif. J Neurochem 94:86–96PubMedCrossRefGoogle Scholar
  22. Ribeiro FM, Black SAG, Cregan SP, Prado VF, Prado VF, Rylett RJ, Ferguson SSG, Prado MAM (2006) The ‘ins’ and ‘outs’ of high-affinity choline transporter. J Neurochem 97:1–12PubMedCrossRefGoogle Scholar
  23. Ribeiro FM, Ferreira LT, Marion S, Fontes S, Gomez M, Fergason SS, Prado MA, Prado VF (2007) SEC14-like protein interacts with cholinergic transpoters. Neurochem Int 50:356–364PubMedCrossRefGoogle Scholar
  24. Rodriguez-Puertas R, Pazos A, Zarranz JJ, Pascual J (1994) Selective cortical decrease of high-affinity choline uptake carrier in Alzheimer’s disease: autoradiographic study using 3H-hemicholinium-3. J Neural Transm 8:161–169CrossRefGoogle Scholar
  25. Rylett RJ, Ball MJ, Colhoun EH (1983) Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 289:169–175PubMedCrossRefGoogle Scholar
  26. Rylett RJ, Davis W, Walters SA (1993) Modulation of high-affinity choline carrier activity following incubation of rat hippocampal synaptosomes with hemicholinium-3. Brain Res 626:184–189PubMedCrossRefGoogle Scholar
  27. Simon JR, Kuhar MJ (1975) Impulse-flow regulation of high affinity choline uptake in brain cholinergic nerve terminals. Nature 255:162–163PubMedCrossRefGoogle Scholar
  28. Simon JR, Atweh S, Kuhar MJ (1976) Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J Neurochem 26:909–922PubMedCrossRefGoogle Scholar
  29. Sims NR, Bowen DM, Allen SJ, Smith CCT, Neary D, Thomas DJ, Davison AN (1983) Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 40:503–509PubMedCrossRefGoogle Scholar
  30. Slotkin TA, Seidler FJ, Crain BJ, Bell JM, Bissette G, Nemeroff CB (1990) Regulatory changes in presynaptic cholinergic function assessed in rapid autopsy material from patients with Alzheimer disease: Implications for etiology and therapy. Proc Natl Acad Sci 87:2452–2455PubMedCrossRefGoogle Scholar
  31. Stip E, Chouinard S, Boulay LJ (2005) On the trail of a cognitive enhancer for the treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29(2):219–232PubMedCrossRefGoogle Scholar
  32. Takashina K, Bessho T, Mori R, Kawai K, Eguchi J, Saito K-I (2008) MKC-231, a choline uptake enhancer: (3) mode of action of MKC-231 in the enhancement of high-affinity choline uptake. J Neural Transm. doi:  10.1007/s00702-008-0049-0
  33. Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827PubMedCrossRefGoogle Scholar
  34. Xie J, Guo Q (2004) Par-4 inhibits choline uptake by interacting with CHT1 and reducing its incorporation on the plasma membrane. J Biol Chem 279(27):28266–28275PubMedCrossRefGoogle Scholar
  35. Yamamura HI, Snyder SH (1973) High affinity transport of choline into synaptosomes of rat brain. J Neurochem 21:1355–1374PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ken Takashina
    • 1
  • Tomoko Bessho
    • 1
  • Reiko Mori
    • 1
  • Kunji Kawai
    • 2
  • Junichi Eguchi
    • 1
  • Ken-Ichi Saito
    • 3
  1. 1.Pharmacology Department IV, Pharmacology Laboratory, Research DivisionMitsubishi Tanabe Pharma CorporationAoba-kuJapan
  2. 2.Lead Generation Research Department, Medicinal Chemistry Laboratory, Research DivisionMitsubishi Tanabe Pharma CorporationYokohamaJapan
  3. 3.Global Product Strategy DepartmentMitsubishi Tanabe CorporationTokyoJapan

Personalised recommendations