Skip to main content
Log in

Choline induces opposite changes in pyramidal neuron excitability and synaptic transmission through a nicotinic receptor-independent process in hippocampal slices

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Choline is present at cholinergic synapses as a product of acetylcholine degradation. In addition, it is considered a selective agonist for α5 and α7 nicotinic acetylcholine receptors (nAChRs). In this study, we determined how choline affects action potentials and excitatory synaptic transmission using extracellular and intracellular recording techniques in CA1 area of hippocampal slices obtained from both mice and rats. Choline caused a reversible depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner that was not affected by α7 nAChR antagonists. Moreover, this choline-induced effect was not mimicked by either selective agonists or allosteric modulators of α7 nAChRs. Additionally, this choline-mediated effect was not prevented by either selective antagonists of GABA receptors or hemicholinium, a choline uptake inhibitor. The paired pulse facilitation paradigm, which detects whether a substance affects presynaptic release of glutamate, was not modified by choline. On the other hand, choline induced a robust increase of population spike evoked by orthodromic stimulation but did not modify that evoked by antidromic stimulation. We also found that choline impaired recurrent inhibition recorded in the pyramidal cell layer through a mechanism independent of α7 nAChR activation. These choline-mediated effects on fEPSP and population spike observed in rat slices were completely reproduced in slices obtained from α7 nAChR knockout mice, which reinforces our conclusion that choline modulates synaptic transmission and neuronal excitability by a mechanism independent of nicotinic receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alkondon M, Albuquerque EX (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 145:109–120

    Article  CAS  PubMed  Google Scholar 

  2. Alkondon M, Pereira EF, Barbosa CT, Albuquerque EX (1997) Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices. J Pharmacol Exp Ther 283:1396–1411

    CAS  PubMed  Google Scholar 

  3. Alkondon M, Pereira EF, Albuquerque EX (1998) Alpha-bungarotoxin- and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res 810:257–263

    Article  CAS  PubMed  Google Scholar 

  4. Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX (1999) Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices. J Neurosci 19:2693–2705

    CAS  PubMed  Google Scholar 

  5. Andersen P (1960) Interhippocampal impulses. II. Apical dendritic activation of CAI neurons. Acta Physiol Scand 48:178–208

    Article  CAS  PubMed  Google Scholar 

  6. Arnaiz-Cot JJ, Gonzalez JC, Sobrado M, Baldelli P, Carbone E, Gandia L, Garcia AG, Hernandez-Guijo JM (2008) Allosteric modulation of alpha 7 nicotinic receptors selectively depolarizes hippocampal interneurons, enhancing spontaneous GABAergic transmission. Eur J Neurosci 27:1097–1110

    Article  CAS  PubMed  Google Scholar 

  7. Auerbach JM, Segal M (1996) Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. J Physiol 492(Pt 2):479–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  CAS  PubMed  Google Scholar 

  9. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  10. Blusztajn JK (1998) Choline, a vital amine. Science 281:794–795

    Article  CAS  PubMed  Google Scholar 

  11. Breese CR, Adams C, Logel J, Drebing C, Rollins Y, Barnhart M, Sullivan B, Demasters BK, Freedman R, Leonard S (1997) Comparison of the regional expression of nicotinic acetylcholine receptor alpha7 mRNA and [125I]-alpha-bungarotoxin binding in human postmortem brain. J Comp Neurol 387:385–398

    Article  CAS  PubMed  Google Scholar 

  12. Briggs CA, Anderson DJ, Brioni JD, Buccafusco JJ, Buckley MJ, Campbell JE, Decker MW, Donnelly-Roberts D, Elliott RL, Gopalakrishnan M, Holladay MW, Hui YH, Jackson WJ, Kim DJ, Marsh KC, O’Neill A, Prendergast MA, Ryther KB, Sullivan JP, Arneric SP (1997) Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol Biochem Behav 57:231–241

    Article  CAS  PubMed  Google Scholar 

  13. Burgard EC, Sarvey JM (1990) Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neurosci Lett 116:34–39

    Article  CAS  PubMed  Google Scholar 

  14. Cermak JM, Holler T, Jackson DA, Blusztajn JK (1998) Prenatal availability of choline modifies development of the hippocampal cholinergic system. FASEB J 12:349–357

    CAS  PubMed  Google Scholar 

  15. Chavez-Noriega LE, Bliss TV, Halliwell JV (1989) The EPSP-spike (E-S) component of long-term potentiation in the rat hippocampal slice is modulated by GABAergic but not cholinergic mechanisms. Neurosci Lett 104:58–64

    Article  CAS  PubMed  Google Scholar 

  16. Cobb SR, Davies CH (2005) Cholinergic modulation of hippocampal cells and circuits. J Physiol 562:81–88

    Article  CAS  PubMed  Google Scholar 

  17. Cole AE, Nicoll RA (1983) Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science 221:1299–1301

    Article  CAS  PubMed  Google Scholar 

  18. Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Article  CAS  PubMed  Google Scholar 

  19. Decker MW, McGaugh JL (1991) The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 7:151–168

    Article  CAS  PubMed  Google Scholar 

  20. del Olmo N, Galarreta M, Bustamante J, Martin del Rio R, Solis JM (2000) Taurine-induced synaptic potentiation: role of calcium and interaction with LTP. Neuropharmacology 39:40–54

    Article  PubMed  Google Scholar 

  21. Djuricic B, Olson SR, Assaf HM, Whittingham TS, Lust WD, Drewes LR (1991) Formation of free choline in brain tissue during in vitro energy deprivation. J Cereb Blood Flow Metab 11:308–313

    Article  CAS  PubMed  Google Scholar 

  22. Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. A relationship to aging? Arch Neurol 30:113–121

    Article  CAS  PubMed  Google Scholar 

  23. Dugladze T, Schmitz D, Whittington MA, Vida I, Gloveli T (2012) Segregation of axonal and somatic activity during fast network oscillations. Science 336:1458–1461

    Article  CAS  PubMed  Google Scholar 

  24. Dutar P, Bassant MH, Senut MC, Lamour Y (1995) The septohippocampal pathway: structure and function of a central cholinergic system. Physiol Rev 75:393–427

    CAS  PubMed  Google Scholar 

  25. Eagle H (1955) The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med 102:595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fermini B, Nattel S (1994) Choline chloride activates time-dependent and time-independent K+ currents in dog atrial myocytes. Am J Physiol 266:C42–C51

    CAS  PubMed  Google Scholar 

  27. Fibiger HC (1991) Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci 14:220–223

    Article  CAS  PubMed  Google Scholar 

  28. Fischer V, Both M, Draguhn A, Egorov AV (2014) Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro. J Neurochem 129:792–805

    Article  CAS  PubMed  Google Scholar 

  29. Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, Dunwiddie TV (1998) Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci 18:1187–1195

    CAS  PubMed  Google Scholar 

  30. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo MC, Reimherr F, Wender P, Yaw J, Young DA, Breese CR, Adams C, Patterson D, Adler LE, Kruglyak L, Leonard S, Byerley W (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci U S A 94:587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gabellieri C, Beloueche-Babari M, Jamin Y, Payne GS, Leach MO, Eykyn TR (2009) Modulation of choline kinase activity in human cancer cells observed by dynamic 31P NMR. NMR Biomed 22:456–461

    Article  CAS  PubMed  Google Scholar 

  32. Gasull T, DeGregorio-Rocasolano N, Zapata A, Trullas R (2000) Choline release and inhibition of phosphatidylcholine synthesis precede excitotoxic neuronal death but not neurotoxicity induced by serum deprivation. J Biol Chem 275:18350–18357

    Article  CAS  PubMed  Google Scholar 

  33. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716

    Article  CAS  PubMed  Google Scholar 

  34. Griguoli M, Cherubini E (2012) Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors. J Physiol 590:655–666

    Article  CAS  PubMed  Google Scholar 

  35. Gu Z, Yakel JL (2011) Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 71:155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holmes HC, Burns SP, Michelakakis H, Kordoni V, Bain MD, Chalmers RA, Rafter JE, Iles RA (1997) Choline and L-carnitine as precursors of trimethylamine. Biochem Soc Trans 25:96S

    Article  CAS  PubMed  Google Scholar 

  37. Hurst RS, Hajos M, Raggenbass M, Wall TM, Higdon NR, Lawson JA, Rutherford-Root KL, Berkenpas MB, Hoffmann WE, Piotrowski DW, Groppi VE, Allaman G, Ogier R, Bertrand S, Bertrand D, Arneric SP (2005) A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci 25:4396–4405

    Article  CAS  PubMed  Google Scholar 

  38. Kalin N, Fernandes J, Hrafnsdottir S, van Meer G (2004) Natural phosphatidylcholine is actively translocated across the plasma membrane to the surface of mammalian cells. J Biol Chem 279:33228–33236

    Article  PubMed  Google Scholar 

  39. Katzenschlager R, Sampaio C, Costa J, Lees A (2003) Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database Syst Rev:CD003735

  40. Kenney JW, Gould TJ (2008) Nicotine enhances context learning but not context-shock associative learning. Behav Neurosci 122:1158–1165

    Article  PubMed  PubMed Central  Google Scholar 

  41. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klein J, Koppen A, Loffelholz K, Schmitthenner J (1992) Uptake and metabolism of choline by rat brain after acute choline administration. J Neurochem 58:870–876

    Article  CAS  PubMed  Google Scholar 

  43. Kuksis A, Breckenridge WC, Marai L, Stachnyk O (1969) Molecular species of lecithins of rat heart, kidney, and plasma. J Lipid Res 10:25–32

    CAS  PubMed  Google Scholar 

  44. Lacal JC (2001) Choline kinase: a novel target for antitumor drugs. IDrugs 4:419–426

    CAS  PubMed  Google Scholar 

  45. Lagostena L, Trocme-Thibierge C, Morain P, Cherubini E (2008) The partial alpha7 nicotine acetylcholine receptor agonist S 24795 enhances long-term potentiation at CA3-CA1 synapses in the adult mouse hippocampus. Neuropharmacology 54:676–685

    Article  CAS  PubMed  Google Scholar 

  46. Le Magueresse C, Safiulina V, Changeux JP, Cherubini E (2006) Nicotinic modulation of network and synaptic transmission in the immature hippocampus investigated with genetically modified mice. J Physiol 576:533–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levin ED, Rezvani AH (2002) Nicotinic treatment for cognitive dysfunction. Curr Drug Targets CNS Neurol Disord 1:423–431

    Article  CAS  PubMed  Google Scholar 

  48. Li X, Rainnie DG, McCarley RW, Greene RW (1998) Presynaptic nicotinic receptors facilitate monoaminergic transmission. J Neurosci 18:1904–1912

    CAS  PubMed  Google Scholar 

  49. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  50. Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol 70:1451–1459

    CAS  PubMed  Google Scholar 

  51. Mann EO, Greenfield SA (2003) Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. J Physiol 551:539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–357

    Article  CAS  PubMed  Google Scholar 

  53. Marai L, Kuksis A (1969) Molecular species of lecithins from erythrocytes and plasma of man. J Lipid Res 10:141–152

    CAS  PubMed  Google Scholar 

  54. Markowska AL, Olton DS, Givens B (1995) Cholinergic manipulations in the medial septal area: age-related effects on working memory and hippocampal electrophysiology. J Neurosci 15:2063–2073

    CAS  PubMed  Google Scholar 

  55. Matsuyama S, Matsumoto A, Enomoto T, Nishizaki T (2000) Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. Eur J Neurosci 12:3741–3747

    Article  CAS  PubMed  Google Scholar 

  56. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696

    Article  CAS  PubMed  Google Scholar 

  57. McKay BE, Placzek AN, Dani JA (2007) Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 74:1120–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McQuiston AR, Madison DV (1999) Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci 19:2887–2896

    CAS  PubMed  Google Scholar 

  59. Meck WH, Williams CL (1997) Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport 8:2831–2835

    Article  CAS  PubMed  Google Scholar 

  60. Meck WH, Smith RA, Williams CL (1989) Organizational changes in cholinergic activity and enhanced visuospatial memory as a function of choline administered prenatally or postnatally or both. Behav Neurosci 103:1234–1241

    Article  CAS  PubMed  Google Scholar 

  61. Mielke JG, Ahuja TK, Comas T, Mealing GA (2011) Choline-mediated depression of hippocampal synaptic transmission. Nutr Neurosci 14:186–194

    Article  CAS  PubMed  Google Scholar 

  62. Mike A, Castro NG, Albuquerque EX (2000) Choline and acetylcholine have similar kinetic properties of activation and desensitization on the alpha7 nicotinic receptors in rat hippocampal neurons. Brain Res 882:155–168

    Article  CAS  PubMed  Google Scholar 

  63. Nashmi R, Xiao C, Deshpande P, McKinney S, Grady SR, Whiteaker P, Huang Q, McClure-Begley T, Lindstrom JM, Labarca C, Collins AC, Marks MJ, Lester HA (2007) Chronic nicotine cell specifically upregulates functional alpha 4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. J Neurosci 27:8202–8218

    Article  CAS  PubMed  Google Scholar 

  64. Orr-Urtreger A, Goldner FM, Saeki M, Lorenzo I, Goldberg L, De Biasi M, Dani JA, Patrick JW, Beaudet AL (1997) Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha-bungarotoxin binding sites and hippocampal fast nicotinic currents. J Neurosci 17:9165–9171

    CAS  PubMed  Google Scholar 

  65. Oshikawa J, Toya Y, Fujita T, Egawa M, Kawabe J, Umemura S, Ishikawa Y (2003) Nicotinic acetylcholine receptor alpha 7 regulates cAMP signal within lipid rafts. Am J Physiol Cell Physiol 285:C567–C574

    Article  CAS  PubMed  Google Scholar 

  66. Papke RL, Bencherif M, Lippiello P (1996) An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the alpha 7 subtype. Neurosci Lett 213:201–204

    Article  CAS  PubMed  Google Scholar 

  67. Pereira EF, Hilmas C, Santos MD, Alkondon M, Maelicke A, Albuquerque EX (2002) Unconventional ligands and modulators of nicotinic receptors. J Neurobiol 53:479–500

    Article  CAS  PubMed  Google Scholar 

  68. Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG, Irving D, Brown A, Perry RH (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64:385–395

    Article  CAS  PubMed  Google Scholar 

  69. Pyapali GK, Turner DA, Williams CL, Meck WH, Swartzwelder HS (1998) Prenatal dietary choline supplementation decreases the threshold for induction of long-term potentiation in young adult rats. J Neurophysiol 79:1790–1796

    CAS  PubMed  Google Scholar 

  70. Raastad M, Shepherd GM (2003) Single-axon action potentials in the rat hippocampal cortex. J Physiol 548:745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rao A, Cha EM, Craig AM (2000) Mismatched appositions of presynaptic and postsynaptic components in isolated hippocampal neurons. J Neurosci 20:8344–8353

    CAS  PubMed  Google Scholar 

  72. Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K (1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sarter M, Parikh V (2005) Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 6:48–56

    Article  CAS  PubMed  Google Scholar 

  74. Schilstrom B, Svensson HM, Svensson TH, Nomikos GG (1998) Nicotine and food induced dopamine release in the nucleus accumbens of the rat: putative role of alpha7 nicotinic receptors in the ventral tegmental area. Neuroscience 85:1005–1009

    Article  CAS  PubMed  Google Scholar 

  75. Secades JJ, Frontera G (1995) CDP-choline: pharmacological and clinical review. Methods Find Exp Clin Pharmacol 17(Suppl B):1–54

    CAS  PubMed  Google Scholar 

  76. Sher E, Chen Y, Sharples TJ, Broad LM, Benedetti G, Zwart R, McPhie GI, Pearson KH, Baldwinson T, De Filippi G (2004) Physiological roles of neuronal nicotinic receptor subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity. Curr Top Med Chem 4:283–297

    Article  CAS  PubMed  Google Scholar 

  77. Shi H, Wang H, Lu Y, Yang B, Wang Z (1999) Choline modulates cardiac membrane repolarization by activating an M3 muscarinic receptor and its coupled K+ channel. J Membr Biol 169:55–64

    Article  CAS  PubMed  Google Scholar 

  78. Staff NP, Spruston N (2003) Intracellular correlate of EPSP-spike potentiation in CA1 pyramidal neurons is controlled by GABAergic modulation. Hippocampus 13:801–805

    Article  CAS  PubMed  Google Scholar 

  79. Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, Scheffer IE, Berkovic SF (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11:201–203

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki E, Okada T (2012) Stratum oriens stimulation-evoked modulation of hippocampal long-term potentiation involves the activation of muscarinic acetylcholine receptors and the inhibition of Kv7/M potassium ion channels. Eur J Neurosci 36:1984–1992

    Article  PubMed  Google Scholar 

  81. Welsby PJ, Rowan MJ, Anwyl R (2009) Intracellular mechanisms underlying the nicotinic enhancement of LTP in the rat dentate gyrus. Eur J Neurosci 29:65–75

    Article  PubMed  Google Scholar 

  82. Wevers A, Jeske A, Lobron C, Birtsch C, Heinemann S, Maelicke A, Schroder R, Schroder H (1994) Cellular distribution of nicotinic acetylcholine receptor subunit mRNAs in the human cerebral cortex as revealed by non-isotopic in situ hybridization. Brain Res Mol Brain Res 25:122–128

    Article  CAS  PubMed  Google Scholar 

  83. Wieprecht M, Wieder T, Geilen CC (1994) N-[2-bromocinnamyl(amino)ethyl]-5-isoquinolinesulphonamide (H-89) inhibits incorporation of choline into phosphatidylcholine via inhibition of choline kinase and has no effect on the phosphorylation of CTP:phosphocholine cytidylyltransferase. Biochem J 297(Pt 1):241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yabuuchi H, O’Brien JS (1968) Positional distribution of fatty acids in glycerophosphatides of bovine gray matter. J Lipid Res 9:65–67

    CAS  PubMed  Google Scholar 

  85. Zeisel SH, Blusztajn JK (1994) Choline and human nutrition. Annu Rev Nutr 14:269–296

    Article  CAS  PubMed  Google Scholar 

  86. Zhu D, Xiong WC, Mei L (2006) Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J Neurosci 26:4841–4851

    Article  CAS  PubMed  Google Scholar 

  87. Zwart R, De Filippi G, Broad LM, McPhie GI, Pearson KH, Baldwinson T, Sher E (2002) 5-Hydroxyindole potentiates human alpha 7 nicotinic receptor-mediated responses and enhances acetylcholine-induced glutamate release in cerebellar slices. Neuropharmacology 43:374–384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by “Instituto de Salud Carlos III” (Grant PI080227 to J.M.H-G and Grant PI081067 to J.M.S.). E.A. is a fellow of “Fundación Teófilo Hernando”. The authors gratefully acknowledge the technical assistance of José Barbado. We also thank Fundación Teófilo Hernando for continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.M. Hernández-Guijo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albiñana, E., Luengo, J., Baraibar, A. et al. Choline induces opposite changes in pyramidal neuron excitability and synaptic transmission through a nicotinic receptor-independent process in hippocampal slices. Pflugers Arch - Eur J Physiol 469, 779–795 (2017). https://doi.org/10.1007/s00424-017-1939-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-1939-5

Keywords

Navigation