Plant Systematics and Evolution

, Volume 293, Issue 1–4, pp 43–52 | Cite as

Embryology of Iris mandshurica Maxim. (Iridaceae) and its systematic relationships

  • Di Zhang
  • Ling WangEmail author
  • Li-huan ZhuoEmail author
Original Article


Sporogenesis, gametogenesis, fertilization and embryogenesis of Iris mandshurica Maxim. were observed using the normal paraffin method. The results are as follows: the development of the anther wall following the dicotyledonous type consisting of four layers, the epidermis, the endothecium, one middle layer and the secretory tapetum. Fibrous thickenings develop in the endothecium when the anther is shed. Simultaneous cytokinesis during microsporogenesis results in a tetrahedral tetrad of microspores. Mature pollen grains are two-celled. The ovary is inferior and trilocular with axial placenta. The ovule is anatropous, bitegminous and crassinucellate. The archesporial cell below the nucellar epidermis undergoes periclinal division producing the primary parietal cell and the primary sporogenous cell. The primary parietal cell participates in the nucellar formation; the primary sporogenous cell differentiates directly as the megasporocyte. Successive cytokinesis in the megasporocyte usually produces the linear tetrad, and the chalazal megaspore of the tetrad develops into a Polygonum-type embryo sac. The fertilization mode is porogamy. The pollen tube enters into the embryo sac and discharges two sperm 16–20 h after pollination. The fertilization is the postmitotic type of syngamy. The first division of the zygote is transversal. Endosperm formation is of the nuclear type. The systematic significance of the embryological characters of I. mandshurica is discussed.


Iris mandshurica Maxim. Micro- and megasporogenesis Male gametophyte Female gametophyte Fertilization Embryogenesis 



This study enjoyed generous support from the National Science Fund of China (30872062), the Research Fund for the Doctoral Program of Higher Education of China (200802250010), China Postdoctoral Science Foundation (20070420893), the Fundamental Research Funds for the Central Universities (DL09CA10), Natural Science Foundation of Heilongjiang Province of China (42400625–4–08005) and the Key Project of Harbin Science and Technology Bureau (2008AA6CN090).


  1. APG (1998) An ordinal classification for the families of flowering plants. Ann Mo Bot Gard 85:531–553CrossRefGoogle Scholar
  2. APG II (angiosperm phylogeny group) (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plant. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  3. Arekal GD, Karanth KA (1981) The Embryology of Epipocjium roseum (Orchidaceae). Plant Syst Evol 138:1–7CrossRefGoogle Scholar
  4. Ashurmetov OA, Yengalychevai SS, Fritsch RDM (2001) Morphological and embryological characters of three middle Asian Allium L. species (Alliaceae). Bot J Linn Soc 137:51–64CrossRefGoogle Scholar
  5. Berg RY (1996) Development of ovule, embryo sac, and endosperm in Dipterostemon and Dichelostemma (Alliaceae) relative to taxonomy. Am J Bot 83:790–801CrossRefGoogle Scholar
  6. Bouman F (1984) The ovule. In: Johri BM (ed) Embryology of angiosperms. Springer, New York, pp 123–157Google Scholar
  7. Chichiriccò G (1989) Embryology of Crocus thomasii (Iridaceae). Plant Syst Evol 168:39–47CrossRefGoogle Scholar
  8. Chichiriccò G (1993) Pregamic and postgamic self-incompatibility systems in Crocus (Iridaceae). Plant Syst Evol 185:219–227CrossRefGoogle Scholar
  9. Chichiriccò G, Ragnelli AM, Aimola P (2002) Ovary–ovule transmitting tract in Crocus (Iridaceae), structure and calcium distribution. Plant Syst Evol 235:155–167CrossRefGoogle Scholar
  10. Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. New York Botanical Garden, New YorkGoogle Scholar
  11. Davis GL (1966) Systematic embryology of the angiosperms. Wiley, New YorkGoogle Scholar
  12. Eames AJ (1961) Morphology of the angiosperms. NewYork, McGraw-HillGoogle Scholar
  13. Endress PK, Igersheim A (2000) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161(Suppl):S211–S223CrossRefGoogle Scholar
  14. Fredrikson M (1991) An embryological study of Platanthera bifolia (Orchidaceae). Plant Syst Evol 174:213–220CrossRefGoogle Scholar
  15. Furness CA, Rudall PJ (2001) Pollen and anther characters in monocot systematics. Grana 40:17–25CrossRefGoogle Scholar
  16. Goldblatt P, Rodriguez A, Powell MP, Davies TJ, Manning JC, Van Der Bank M, Savolainen V (2008) Iridaceae ‘out of Australasia’? Phylogeny, biogeography, and divergence time based on plastid DNA sequences. Syst Bot 33:495–508CrossRefGoogle Scholar
  17. Hao LZ, Yang ZR, Wang LY, Zhao QY, Zhang FL (2005) Observation on flower’s morphological and anther’s anatomy character of three Allium plants. Bull Bot Res 25:277–280Google Scholar
  18. Herr JR (1984) Embryology and taxonomy. In: Johri BM (ed) Embryology of angiosperms. Springer, New York, pp 645–696Google Scholar
  19. Holford P, Croft J, Newbury HJ (1991) Structural studies of microsporogenesis in fertile and male-sterile onions (Allium cepa L.) containing the cms-s cytoplasm. Theor Appl Genet 82:745–755Google Scholar
  20. Hu SY (2005) Reproductive biology of angiosperms. China Higher Education Press, BeijingGoogle Scholar
  21. Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vol 2. Springer, New YorkGoogle Scholar
  22. Kozyrenko MM, Artiukova EV, Zhuravlev IN (2009) Independent species status of Iris vorobievii NS Pavlova Iris mandshurica Maxim., and Iris humilis Georgi (Iridaceae): evidence from the nuclear and chloroplast genomes. Genetika 45:1575–1584PubMedGoogle Scholar
  23. Lakshmanan KK, Philip VJ (1971) A Contribution to the embryology of Iridaceae. Plant Sci 71:110–116Google Scholar
  24. Lee YI, Yeung EC, Lee N, Chung MC (2008) Embryology of Phalaenopsis amabilis var formosa: embryo development. Bot Stud 49:139–146Google Scholar
  25. Li L, Liang HX, Peng H, Lei LG (2003) Sporogenesis and gametogenesis in Sladenia and their systematic implication. Bot J Linn Soc 143:305–314CrossRefGoogle Scholar
  26. Li N, Dong YZ, Liang FL (2005) Studies on microsporogenesis and the formation of malegametophyte in Iris blowdowill. Bull Bot Res 25:140–143Google Scholar
  27. Mu SH (2005) Studies on the systematic position of some Iris plants in China (in Chinese with English abstract). Ph.D. dissertation. Chinese Academy of ForestryGoogle Scholar
  28. Musiali K, Bohanec B, Jakse M, Przywara L (2005) The development of onion (Allium cepa L.) Embryo sacs in vitro and gynogenesis induction in relation to flower size. In Vitro Cell Dev Biol Plant 41:446–452CrossRefGoogle Scholar
  29. Palser BF (1975) The base of angiosperm phylogeny: embryology. Ann Mo Bot Gard 62:621–644CrossRefGoogle Scholar
  30. Penet L, Nadot S, Ressayre A, Forchioni A, Dreyer L, Gouyon PH (2005) Multiple developmental pathways leading to a single morph: monosulcate pollen (examples from the asparagales). Ann Bot 95:331–343PubMedGoogle Scholar
  31. Penet L, Laurin M, Gouyon PH, Nadot S (2007) Constraints and selection: insights from microsporogenesis in asparagales. Evol Dev 9:460–471PubMedCrossRefGoogle Scholar
  32. Peter G, Manning J (2008) The iris family: natural history and classification. Timber Press, PortlandGoogle Scholar
  33. Riley HP (1942) Development of the embryo sac of Iris fulva and I hexagona var. giganticaerulea. Trans Am Microsc Soc 61:328–335CrossRefGoogle Scholar
  34. Rudall PJ, Owens SJ, Kenton AY (1984) Embryology and Breeding Systems in Crocus (Iridaceae)—a study in causes of chromosome variation. Plant Syst Evol 148:119–134CrossRefGoogle Scholar
  35. Rudall PJ, Furness CA, Chase MW, Fay MF (1997) Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Can J Bot 75:408–430CrossRefGoogle Scholar
  36. Rudall PJ, Engleman EM, Hanson L, MW CHASE (1998) Embryology, cytology and systematics of Hemiphylacus, Asparagus and Anemarrhena (Asparagales). Plant Syst Evol 211:181–199CrossRefGoogle Scholar
  37. Shen YG, Wang ZL, Guan KY (2007) Karyotypical studies on thirteen Iris plants from China. Acta Phytotaxon Sinica 45(5):601–618CrossRefGoogle Scholar
  38. Sogo A, Tobe H (2006) The evolution of fertilization modes independent of the micropyle in fagales and ‘pseudoporogamy’. Plant Syst Evol 259:73–80CrossRefGoogle Scholar
  39. Sood SK (1989) Embryology and systematic position of Liparis (Orchidaceae). Plant Syst Evol 166:1–9CrossRefGoogle Scholar
  40. Sood SK (1992) Embryology of Malaxis saprophyta, with comments on the systematic position of Malaxis (Orchidaceae). Plant Syst Evol 179:95–105CrossRefGoogle Scholar
  41. Sood SK, Mohana Rao PR (1988) Studies in the embryology of the diandrous orchid Cypripedium cordigerum (Cypripedieae, Orchidaceae). Plant Syst Evol 160:159–168CrossRefGoogle Scholar
  42. Stebbins GL (1974) Flowering plants: evolution above the species level. Belknap Press of Harvard University, CambridgeGoogle Scholar
  43. Takhtajan A (1980) Outline of the classification of flowering plants (Magnoliophya). Bot Rev 46:225–359CrossRefGoogle Scholar
  44. Takhtajan A (1991) Evolutionary trends in flowering plants. Columbia University Press, New YorkGoogle Scholar
  45. Thorne RF (1992) Classification and geography of flowering plants. Bot Rev 58:225–348CrossRefGoogle Scholar
  46. Tian HQ, Yang HY (1991) Embryo sac development and embyrogeny in Allium Tuberosum. J Wuhan Bot Res 9:5–12Google Scholar
  47. Tobe H (1989) The Embryology of angiosperms: its broader application to the systematic and evolutionary study. Bot Mag (Tokyo) 102:351–367CrossRefGoogle Scholar
  48. Wang L (2005) Study on development biology and systematic evolution of some species of Iris (in chinese with english abstract). Ph.D. dissertation, Northeast Forestry UniversityGoogle Scholar
  49. Wang ZF, Ren Y (2007) Advances in the study of the angiosperm ovule. Chin Bull Bot 24(1):49–59Google Scholar
  50. Wang L, Zhuo LH (2006) The relationship between seed coat micro-morphology characteristics and systematic evolution of some species of Iris. Bull Bot Res 26:286–290Google Scholar
  51. Wilson CA (2001) Floral stages, ovule development, and ovule and fruit success in Iris tenax focusing on var gormanii, a taxon with low seed set. Am J Bot 88:2221–2231CrossRefGoogle Scholar
  52. Winiarczyk K, Kosmala A (2009) Development of the female gametophyte in the sterile ecotype of the bolting Allium sativum L. Sci Hortic 121:353–360CrossRefGoogle Scholar
  53. Yamada T, Tobe H, Imaichi R, Kato M (2001) Developmental morphology of the ovules of Amborella trichopoda (Amborellaceae)and Chloranthus serratus (Chloranthaceae). Bot J Linn Soc 137:277–290CrossRefGoogle Scholar
  54. Zhang D, Zhuo LH, Shen XH (2010) Sporogenesis and gametogenesis in Agapanthus praecox Willd. orientalis (Leighton) Leighton and their systematic implications. Plant Syst Evol 288:1–11CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Ornamental Plants and Horticulture, College of Landscape ArchitectureNortheast Forestry UniversityHarbinChina

Personalised recommendations