Skip to main content

Advertisement

Log in

Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

For the first time, a comprehensive review is presented on the quantitative determination of narrow therapeutic index drugs (NTIDs) by nano optical and electrochemical sensors and biosensors. NTIDs have a narrow index between their effective doses and those at which they produce adverse toxic effects. Therefore, accurate determination of these drugs is very important for clinicians to provide a clear judgment about drug therapy for patients. Routine analytical techniques have limitations such as being expensive, laborious, and time-consuming, and need a skilled user and therefore  the nano/(bio)sensing technology leads to high interest.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Ernst FR, Grizzle AJ (1996)Drug-related morbidity and mortality: updating the cost-of-illness model. Journal of the American Pharmaceutical Association 41(2001):192–199

    Google Scholar 

  2. Winterstein AG, Sauer BC, Hepler CD, Poole C (2002) Preventable drug-related hospital admissions. Annals of Pharmacotherapy 36:1238–1248

    Article  Google Scholar 

  3. Patel P, Zed PJ (2002)Drug-related visits to the emergency department: how big is the problem? Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 22:915–923

    Article  Google Scholar 

  4. Tamargo J, Le Heuzey J-Y, Mabo P (2015) Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide. European journal of clinical pharmacology 71:549–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burns M (1999) Management of narrow therapeutic index drugs. Journal of Thrombosis and Thrombolysis 7:137–143

    Article  CAS  PubMed  Google Scholar 

  6. A.Z. Gondal, H. Zulfiqar, Aminophylline, StatPearls [Internet], StatPearls Publishing 2019.

  7. Greenberg RG, Melloni C, Wu H, Gonzalez D, Ku L, Hill KD, Hornik CP, Zheng N, Jiang W, Cohen-Wolkowiez M (2016) Therapeutic index estimation of antiepileptic drugs: a systematic literature review approach. Clinical Neuropharmacology 39:232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bonnaire A, Vernet-Garnier V, Lebrun D, Bajolet O, Bonnet M, Hentzien M, Xavier O, Diallo S, Firouzé B-S(2020) Clindamycin combination treatment for the treatment of bone and joint infections caused by clindamycin-susceptible, erythromycin-resistant Staphylococcus spp. Diagnostic Microbiology and Infectious Disease 115225

  9. Cairns R, Brown JA, Buckley NA (2019) Clonidine exposures in children under 6 (2004–2017): a retrospective study. Archives of disease in childhood 104:287–291

    Article  PubMed  Google Scholar 

  10. Kahan BD, Keown P, Levy GA, Johnston A (2002) Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clinical Therapeutics 24:330–350

    Article  CAS  PubMed  Google Scholar 

  11. Cheng M-C, Chi K-M, Chang SY (2013) Detection of digoxin in urine samples by surface-assisted laser desorption/ionization mass spectrometry with dispersive liquid–liquid microextraction. Talanta 115:123–128

    Article  CAS  PubMed  Google Scholar 

  12. Walter E, McKinlay J, Corbett J, Kirk-Bayley J (2018) Review of management in cardiotoxic overdose and efficacy of delayed intralipid use. Journal of the Intensive Care Society 19:50–55

    Article  PubMed  Google Scholar 

  13. Saleh P, Abbasalizadeh S, Rezaeian S, Naghavi-Behzad M, Piri R, Pourfeizi HH (2016)Gentamicin-mediated ototoxicity and nephrotoxicity: a clinical trial study. Nigerian Medical Journal 57:347

    Article  PubMed  PubMed Central  Google Scholar 

  14. Desai C (2016) Meyler’s side effects of drugs: the international encyclopedia of adverse drug reactions and interactions. Indian Journal of Pharmacology 48:224

    PubMed Central  Google Scholar 

  15. Williams DM, Rubin BK (2018) Clinical Pharmacology of Bronchodilator Medications. Respiratory Care 63:641–654

    Article  PubMed  Google Scholar 

  16. Keyvanfard M, Alizad K (2016) Determination of isoproterenol in pharmaceutical and biological samples using a pyrogallol red multiwalled carbon nanotube paste electrode as a sensor. Chinese Journal of Catalysis 37:579–583

    Article  CAS  Google Scholar 

  17. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, Cooper DS, Kim BW, Peeters RP, Rosenthal MS (2014) Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid 24:1670–1751

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gelenberg AJ, Kane JM, Keller MB, Lavori P, Rosenbaum JF, Cole K, Lavelle J (1989) Comparison of standard and low serum levels of lithium for maintenance treatment of bipolar disorder. New England Journal of Medicine 321:1489–1493

    Article  CAS  Google Scholar 

  19. MaGuire GP, Emirgil C (1986) Bronchodilator and side effects of different modes of administration of metaproterenol: inhaled, oral, and in combination. The American journal of the medical sciences 291:168–174

    Article  CAS  PubMed  Google Scholar 

  20. Suchonwanit P, Thammarucha S, Leerunyakul K (2019) Minoxidil and its use in hair disorders: a review, Drug Design. Development and Therapy 13:2777

    Article  CAS  Google Scholar 

  21. Kuo H-F, Lai Y-J, Wu J-C, Lee K-T, Chu C-S, Chen J, Wu J-R, Wu B-N(2014) A xanthine-derivative K+-channel opener protects against serotonin-induced cardiomyocyte hypertrophy via the modulation of protein kinases. International journal of biological sciences 10:64

    Article  Google Scholar 

  22. Koola MM, Varghese SP, Fawcett JA (2014)High-dose prazosin for the treatment of post-traumatic stress disorder. Therapeutic advances in psychopharmacology 4:43–47

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bentue-Ferrer D, Verdier M-C, Tribut O (2012) Therapeutic drug monitoring of primidone and phenobarbital. Therapie 67:381

    PubMed  Google Scholar 

  24. Fukuoka M, Kuki I, Kawawaki H, Okazaki S, Kim K, Hattori Y, Tsuji H, Nukui M, Inoue T, Yoshida Y (2017) Quinidine therapy for West syndrome with KCNTI mutation: a case report. Brain and Development 39:80–83

    Article  PubMed  Google Scholar 

  25. Zeidman A, Gardyn J, Fradin Z, Fink G, Mittelman M (1997) Therapeutic and toxic theophylline levels in asthma attacks—is there a need for additional theophylline? Harefuah 133:3–5 80

    CAS  PubMed  Google Scholar 

  26. Martin JH, Norris R, Barras M, Roberts J, Morris R, Doogue M, Jones GR (2010) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society Of Infectious Diseases Pharmacists. The Clinical biochemist Reviews 31:21

    PubMed  PubMed Central  Google Scholar 

  27. Kwon M-J, Kim H-J, Kim J-W, Lee K-H, Sohn K-H, Cho H-J, On Y-K, Kim J-S, Lee S-Y(2009) Determination of plasma warfarin concentrations in Korean patients and its potential for clinical application. The Korean journal of laboratory medicine 29:515–523

    CAS  PubMed  Google Scholar 

  28. Rheinstein P (1993) The generic drug approval process. American family physician 48:1357–1360

    CAS  PubMed  Google Scholar 

  29. Berg M, Gross R, Tomaszewski K, Zingaro W, Haskins L (2008) Generic substitution in the treatment of epilepsy: case evidence of breakthrough seizures. Neurology 71:525–530

    Article  CAS  PubMed  Google Scholar 

  30. Crawford P, Feely M, Guberman A, Kramer G (2006) Are there potential problems with generic substitution of antiepileptic drugs?: a review of issues. Seizure 15:165–176

    Article  CAS  PubMed  Google Scholar 

  31. Holbrook A, Schulman S, Witt DM, Vandvik PO, Fish J, Kovacs MJ, Svensson PJ, Veenstra DL, Crowther M, Guyatt GH (2012)Evidence-based management of anticoagulant therapy: antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141:e152S–e184S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caraballo PJ, Heit JA, Atkinson EJ, Silverstein MD, O'Fallon WM, Castro MR, Melton LJ (1999)Long-term use of oral anticoagulants and the risk of fracture. Archives of Internal Medicine 159:1750–1756

    Article  CAS  PubMed  Google Scholar 

  33. Rybak M, Lomaestro B, Rotschafer JC, Moellering R, Craig W, Billeter M, Dalovisio JR, Levine DP (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. American Journal of Health-System Pharmacy 66:82–98

    Article  CAS  PubMed  Google Scholar 

  34. R. Walls, R. Hockberger, M. Gausche-Hill, Rosen’s emergency medicine-concepts and clinical practice e-book, Elsevier Health Sciences 2017.

  35. Seneff M, Scott J, Friedman B, Smith M (1990) Acute theophylline toxicity and the use of esmolol to reverse cardiovascular instability. Annals of emergency medicine 19:671–673

    Article  CAS  PubMed  Google Scholar 

  36. De Marco FA, Ghizoni E, Kobayashi E, Li LM, Cendes F (2003) Cerebellar volume and long-term use of phenytoin. Seizure 12:312–315

    Article  Google Scholar 

  37. Koliqi R, Polidori C, Islami H (2015) Prevalence of side effects treatment with carbamazepine and other antiepileptics in patients with epilepsy. Materia socio-medica 27:167

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yaylacı S, Demir MV, Acar B, Sipahi S, Tamer A (2012) Successful treatment of excessive dose of carbamazepine. Indian Journal of Pharmacology 44:417

    Article  PubMed  PubMed Central  Google Scholar 

  39. Al-Jenoobi FI, Ahad A, Mahrous GM, Raish M, Alam MA, Al-Mohizea AM (2015) A simple HPLC–UV method for the quantification of theophylline in rabbit plasma and its pharmacokinetic application. Journal of Chromatographic Science 53:1765–1770

    Article  CAS  PubMed  Google Scholar 

  40. Charehsaz M, Gürbay A, Aydin A, Şahin G (2014) Simple, fast and reliable liquid chromatographic and spectrophotometric methods for the determination of theophylline in urine, saliva and plasma samples. Iranian journal of Pharmaceutical Research: IJPR 13:431

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gu X, Yu S, Peng Q, Ma M, Hu Y, Zhou B (2020) Determination of unbound valproic acid in plasma using centrifugal ultrafiltration and gas chromatography: application in TDM. Analytical biochemistry 588:113475

    Article  CAS  PubMed  Google Scholar 

  42. Bartella L, Di Donna L, Napoli A, Siciliano C, Sindona G, Mazzotti F (2019) A rapid method for the assay of methylxanthines alkaloids: theobromine, theophylline and caffeine, in cocoa products and drugs by paper spray tandem mass spectrometry. Food chemistry 278:261–266

    Article  CAS  PubMed  Google Scholar 

  43. Babu AS, Thippeswamy B, Vinod A, Ramakishore E, Anand S, Senthil D (2011) Determination of theophylline in rabbit plasma by triple quadrupole LC/MS. Pharmaceutical methods 2:211–217

    Article  PubMed  PubMed Central  Google Scholar 

  44. Di Corcia D, Morra V, Pazzi M, Vincenti M (2010) Simultaneous determination of β2-agonists in human urine by fast-gaschromatography/mass spectrometry: method validation and clinical application. Biomedical Chromatography 24:358–366

    PubMed  Google Scholar 

  45. Mei S, Wang J, Chen D, Zhu L, Zhao M, Tian X, Hu X, Zhao Z (2018) Simultaneous determination of cyclosporine and tacrolimus in human whole blood by ultra-high performance liquid chromatography tandem mass spectrometry and comparison with a chemiluminescence microparticle immunoassay. Journal of Chromatography B 1087:36–42

    Article  Google Scholar 

  46. Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014)Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Analytical chemistry 86:11937–11941

    Article  CAS  PubMed  Google Scholar 

  47. Lin Z, Ma Q, Fei X, Zhang H, Su X (2014) A novel aptamer functionalized CuInS2 quantum dots probe for daunorubicin sensing and near infrared imaging of prostate cancer cells. Analytica chimica acta 818:54–60

    Article  CAS  PubMed  Google Scholar 

  48. Shayesteh OH, Khosroshahi AG (2020) A polyA aptamer-based label-free colorimetric biosensor for the detection of kanamycin in human serum. Analytical Methods 12:1858–1867

    Article  CAS  Google Scholar 

  49. Hassanpour S, Behnam B, Baradaran B, Hashemzaei M, Oroojalian F, Mokhtarzadeh A, Guardia M (2021) Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta 221:121610

    Article  CAS  PubMed  Google Scholar 

  50. Feng C, Dai S, Wang L (2014) Optical aptasensors for quantitative detection of small biomolecules: a review. Biosensors and Bioelectronics 59:64–74

    Article  CAS  PubMed  Google Scholar 

  51. Shayesteh OH, Ghavami R (2019) Two colorimetric ampicillin sensing schemes based on the interaction of aptamers with gold nanoparticles. Microchimica Acta 186:485

    Article  PubMed  Google Scholar 

  52. Rhouati A, Bulbul G, Latif U, Hayat A, Li Z-H, Marty JL (2017)Nano-aptasensing in mycotoxin analysis: recent updates and progress. Toxins 9:349

    Article  PubMed Central  Google Scholar 

  53. Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Advanced Materials 23:4215–4236

    Article  CAS  PubMed  Google Scholar 

  54. Shayesteh OH, Ghavami R (2020) A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 226:117644

    Article  CAS  Google Scholar 

  55. Shi H, He X, Cui W, Wang K, Deng K, Li D, Xu F (2014) Locked nucleic acid/DNA chimeric aptamer probe for tumor diagnosis with improved serum stability and extended imaging window in vivo. Analytica Chimica Acta 812:138–144

    Article  CAS  PubMed  Google Scholar 

  56. Katiyar N, Selvakumar LS, Patra S, Thakur MS (2013) Gold nanoparticles based colorimetric aptasensor for theophylline. Analytical Methods 5:653–659

    Article  CAS  Google Scholar 

  57. Ma X, Guo Z, Mao Z, Tang Y, Miao P (2018) Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles. Microchimica Acta 185:33

    Article  Google Scholar 

  58. Emrani AS, Danesh NM, Lavaee P, Jalalian SH, Ramezani M, Abnous K, Taghdisi SM (2015) Sensitive and selective detection of digoxin based on fluorescence quenching and colorimetric aptasensors. Analytical Methods 7:3419–3424

    Article  Google Scholar 

  59. Nikfarjam A, Rezayan AH, Mohammadkhani G, Mohammadnejad J (2017)Label-free detection of digoxin using localized surface plasmon resonance-based nanobiosensor. Plasmonics 12:157–164

    Article  CAS  Google Scholar 

  60. Yan S, Lai X, Du G, Xiang Y (2018) Identification of aminoglycoside antibiotics in milk matrix with a colorimetric sensor array and pattern recognition methods. Analytica Chimica Acta 1034:153–160

    Article  CAS  PubMed  Google Scholar 

  61. Miranda-Andrades JR, Pérez-Gramatges A, Pandoli O, Romani EC, Aucélio RQ, da Silva AR (2017) Spherical gold nanoparticles and gold nanorods for the determination of gentamicin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 172:126–134

    Article  CAS  Google Scholar 

  62. Jahed FS, Hamidi S, Nemati M (2018)Dopamine-capped silver nanoparticles as a colorimetric probe for on-site detection of cyclosporine. ChemistrySelect 3:13323–13328

    Article  CAS  Google Scholar 

  63. Zhan L, Yang T, Zhen SJ, Huang CZ (2017) Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury (II) and chromium (III). Microchimica Acta 184:3171–3178

    Article  CAS  Google Scholar 

  64. Khoubnasabjafari M, Salari R, Samadi A, Jouyban-Gharamaleki V, Jouyban A (2019) Colorimetric determination of phenytoin using indoxyl sulfate capped silver nanoparticles. Analytical Methods 11:3324–3330

    Article  CAS  Google Scholar 

  65. Jing L, Zhang Q, Wang Y, Liu X, Wei T (2016) Surface plasmon resonance sensor for theophylline using a water-compatible molecularly imprinted film. Analytical Methods 8:2349–2356

    Article  CAS  Google Scholar 

  66. Feng S, Chen C, Wang W, Que L (2018) An aptamer nanopore-enabled microsensor for detection of theophylline. Biosensors and Bioelectronics 105:36–41

    Article  CAS  PubMed  Google Scholar 

  67. Ikram F, Qayoom A, Shah MR (2018) Synthesis of epicatechin coated silver nanoparticles for selective recognition of gentamicin. Sensors and Actuators B: Chemical 257:897–905

    Article  CAS  Google Scholar 

  68. Gukowsky JC, Tan C, Han Z, He L (2018)Cysteamine-modified gold nanoparticles as a colorimetric sensor for the rapid detection of gentamicin. Journal of food science 83:1631–1638

    Article  CAS  PubMed  Google Scholar 

  69. Obare SO, Hollowell RE, Murphy CJ (2002) Sensing strategy for lithium ion based on gold nanoparticles. Langmuir 18:10407–10410

    Article  CAS  Google Scholar 

  70. Grabchev I, Dumas S, Chovelon J-M(2009) A polyamidoamine dendrimer as a selective colorimetric and ratiometric fluorescent sensor for Li+ cations in alkali media. Dyes and Pigments 82:336–340

    Article  CAS  Google Scholar 

  71. May J, Hickey M, Triantis I, Palazidou E, Kyriacou PA (2015) Spectrophotometric analysis of lithium carbonate used for bipolar disorder. Biomedical optics express 6:1067–1073

    Article  PubMed  PubMed Central  Google Scholar 

  72. Khoubnasabjafari M, Samadi A, Jouyban A (2019)In-situ microscale spectrophotometric determination of phenytoin by using branched gold nanoparticles. Microchimica Acta 186:422

    Article  PubMed  Google Scholar 

  73. Akhtar S, Shahzad K, Mushtaq S, Safi F, Ali I, Bhatti KA (2019) Synthesis and characterization of amphotericin B stabilized gold nanoparticles sensor for detection of clindamycin drug. Materials Research Express 6:075068

    Article  CAS  Google Scholar 

  74. Omidfar K, Kia S, Kashanian S, Paknejad M, Besharatie A, Kashanian S, Larijani B (2010) Colloidal nanogold-based immunochromatographic strip test for the detection of digoxin toxicity. Applied biochemistry and biotechnology 160:843–855

    Article  CAS  PubMed  Google Scholar 

  75. Ruppert C, Phogat N, Laufer S, Kohl M, Deigner H-P(2019) A smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring of digoxigenin. Microchimica Acta 186:119

    Article  PubMed  Google Scholar 

  76. Fitzpatrick B, O'Kennedy R (2004) The development and application of a surface plasmon resonance-based inhibition immunoassay for the determination of warfarin in plasma ultrafiltrate. Journal of immunological methods 291:11–25

    Article  CAS  PubMed  Google Scholar 

  77. Belal TS, El-Kafrawy DS, Mahrous MS, Abdel-Khalek MM, Abo-Gharam AH (2016) Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 155:47–53

    Article  CAS  Google Scholar 

  78. Altintas Z (2018) Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanoMIPs. Scientific reports 8:1–12

    Article  CAS  Google Scholar 

  79. Korposh S, Chianella I, Guerreiro A, Caygill S, Piletsky S, James SW, Tatam RP (2014) Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles. Analyst 139:2229–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang G, Zhu Y, Chen L, Zhang X (2015) Photoinduced electron transfer (PET) based label-free aptasensor for platelet-derived growth factor-BB and its logic gate application. Biosensors and Bioelectronics 63:552–557

    Article  CAS  PubMed  Google Scholar 

  81. Sharma A, Khan R, Catanante G, Sherazi TA, Bhand S, Hayat A, Marty JL (2018) Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins 10:197

    Article  PubMed Central  Google Scholar 

  82. Zhou D-M, Xi Q, Liang M-F, Chen C-H, Tang L-J, Jiang J-H(2013) Graphene oxide-hairpin probe nanocomposite as a homogeneous assay platform for DNA base excision repair screening. Biosensors and Bioelectronics 41:359–365

    Article  CAS  PubMed  Google Scholar 

  83. Chou C-C, Huang Y-H(2012) Nucleic acid sandwich hybridization assay with quantum dot-induced fluorescence resonance energy transfer for pathogen detection. Sensors 12:16660–16672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dong Y, Li G, Zhou N, Wang R, Chi Y, Chen G (2012) Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Analytical Chemistry 84:8378–8382

    Article  CAS  PubMed  Google Scholar 

  85. Adhikari B, Banerjee A (2010) Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII sensing. Chemistry of Materials 22:4364–4371

    Article  CAS  Google Scholar 

  86. L. Chen, Y. Wang, X. Fu, L. Chen, Novel optical nanoprobes for chemical and biological analysis, Springer 2014.

  87. Song S, Wang L, Li J, Fan C, Zhao J (2008)Aptamer-based biosensors. TrAC Trends in Analytical Chemistry 27:108–117

    Article  CAS  Google Scholar 

  88. de-los Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2007)Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B. Journal of the American Chemical Society 129:3808–3809

    Article  Google Scholar 

  89. Brumbt A, Ravelet C, Grosset C, Ravel A, Villet A, Peyrin E (2005) Chiral stationary phase based on a biostable L-RNA aptamer. Analytical chemistry 77:1993–1998

    Article  CAS  PubMed  Google Scholar 

  90. Ni S, Yao H, Wang L, Lu J, Jiang F, Lu A, Zhang G (2017) Chemical modifications of nucleic acid aptamers for therapeutic purposes. International journal of molecular sciences 18:1683

    Article  PubMed Central  Google Scholar 

  91. Kuwahara M, Sugimoto N (2010) Molecular evolution of functional nucleic acids with chemical modifications. Molecules 15:5423–5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li N, Nguyen HH, Byrom M, Ellington AD (2011) Inhibition of cell proliferation by an anti-EGFR aptamer. PloS one 6:e20299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hernandez FJ, Stockdale KR, Huang L, Horswill AR, Behlke MA, McNamara JO (2012) Degradation of nuclease-stabilized RNA oligonucleotides in Mycoplasma-contaminated cell culture media. Nucleic Acid Therapeutics 22:58–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang H, Ling K, Tao X, Zhang Q (2015) Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor. Biosensors and Bioelectronics 70:299–303

    Article  CAS  PubMed  Google Scholar 

  95. S. Bi, Y. Yan, Nucleic acid amplification strategies-based chemiluminescence biosensors, Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine, Springer 2019, pp. 45-66.

  96. Huang J, Wu Y, Chen Y, Zhu Z, Yang X, Yang CJ, Wang K, Tan W (2011)Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angewandte Chemie International Edition 50:401–404

    Article  CAS  PubMed  Google Scholar 

  97. Luo J, Shen X, Li B, Li X, Zhou X (2018) Signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP. Microchimica Acta 185:392

    Article  PubMed  Google Scholar 

  98. Zhou F, Meng R, Liu Q, Jin Y, Li B (2016) Photoinduced electron transfer-based fluorescence quenching combined with rolling circle amplification for sensitive detection of MicroRNA. ChemistrySelect 1:6422–6428

    Article  CAS  Google Scholar 

  99. Xu X, Zhang B, Gan P, Wu J, Dai W, Zhang L, Wang J (2017)On-nylon membrane detection of nucleic acid molecules by rolling circle amplification. Analytical Biochemistry 533:26–33

    Article  CAS  PubMed  Google Scholar 

  100. Ma F, Liu M, Tang B, Zhang C-y(2017) Sensitive quantification of microRNAs by isothermal helicase-dependent amplification. Analytical Chemistry 89:6182–6187

    Article  CAS  PubMed  Google Scholar 

  101. Demuth C, Spindler K-LG, Johansen JS, Pallisgaard N, Nielsen D, Hogdall E, Vittrup B, Sorensen BS (2018) Measuring KRAS mutations in circulating tumor DNA by droplet digital PCR and next-generation sequencing. Translational Oncology 11:1220–1224

    Article  PubMed  PubMed Central  Google Scholar 

  102. Schuler F, Trotter M, Zengerle R, von Stetten F (2016) Monochrome multiplexing in polymerase chain reaction by photobleaching of fluorogenic hydrolysis probes. Analytical chemistry 88:2590–2595

    Article  CAS  PubMed  Google Scholar 

  103. Zhang W, Li N, Koga D, Zhang Y, Zeng H, Nakajima H, Lin J-M, Uchiyama K (2018) Inkjet printing based droplet generation for integrated online digital polymerase chain reaction. Analytical chemistry 90:5329–5334

    Article  CAS  PubMed  Google Scholar 

  104. Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chemical reviews 115:12491–12545

    Article  CAS  PubMed  Google Scholar 

  105. Lou Y-F, Peng Y-B, Luo X, Yang Z, Wang R, Sun D, Li L, Tan Y, Huang J, Cui L (2019) A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP. Microchimica Acta 186:494

    Article  PubMed  Google Scholar 

  106. Ji X, Wang H, Song B, Chu B, He Y (2018) Silicon nanomaterials for biosensing and bioimaging analysis. Frontiers in chemistry 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA (2019) Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy 109:1100–1111

    Article  CAS  Google Scholar 

  108. Peng J, Li J, Xu W, Wang L, Su D, Teoh CL, Chang Y-T(2018) Silica nanoparticle-enhanced fluorescent sensor array for heavy metal ions detection in colloid solution. Analytical Chemistry 90:1628–1634

    Article  CAS  PubMed  Google Scholar 

  109. Emrani AS, Taghdisi SM, Danesh NM, Jalalian SH, Ramezani M, Abnous K (2015) A novel fluorescent aptasensor for selective and sensitive detection of digoxin based on silica nanoparticles. Analytical Methods 7:3814–3818

    Article  CAS  Google Scholar 

  110. Y. Dong, Aptamers for analytical applications: affinity acquisition and method design, John Wiley & Sons 2019.

  111. Elmizadeh H, Faridbod F, Soleimani M, Ganjali MR, Bardajee GR (2020) Fluorescent apta-nanobiosensors for fast and sensitive detection of digoxin in biological fluids using rGQDs: comparison of two approaches for immobilization of aptamer. Sensors and Actuators B: Chemical 302:127133

    Article  CAS  Google Scholar 

  112. N. Chaniotakis, R. Buiculescu, Semiconductor quantum dots in chemical sensors and biosensors, Nanosensors for Chemical and Biological Applications, Elsevier 2014, pp. 267-294.

  113. Bala R, Swami A, Tabujew I, Peneva K, Wangoo N, Sharma RK (2018)Ultra-sensitive detection of malathion using quantum dots-polymer based fluorescence aptasensor. Biosensors and Bioelectronics 104:45–49

    Article  CAS  PubMed  Google Scholar 

  114. Pourghobadi Z, Mirahmadpour P, Zare H (2018) Fluorescent biosensor for the selective determination of dopamine by TGA-capped CdTe quantum dots in human plasma samples. Optical Materials 84:757–762

    Article  CAS  Google Scholar 

  115. Chen J, Huang Z, Meng H, Zhang L, Ji D, Liu J, Yu F, Qu L, Li Z (2018) A facile fluorescence lateral flow biosensor for glutathione detection based on quantum dots-MnO2 nanocomposites. Sensors and Actuators B: Chemical 260:770–777

    Article  CAS  Google Scholar 

  116. Borghei YS, Hosseini M (2018) Ratiometric fluorescence biosensor based on DNA/miRNA duplex@ CdTe QDs and oxidized luminol as a fluorophore for miRNA detection. Journal of Luminescence 204:16–23

    Article  CAS  Google Scholar 

  117. Liang W, Liu S, Liu Z, Li D, Wang L, Hao C, He Y (2015) Electron transfer and fluorescence “turn-off” based CdTe quantum dots for vancomycin detection at nanogram level in aqueous serum media. New Journal of Chemistry 39:4774–4782

    Article  CAS  Google Scholar 

  118. Bigdeli A, Ghasemi F, Abbasi-Moayed S, Shahrajabian M, Fahimi-Kashani N, Jafarinejad S, Nejad MAF, Hormozi-Nezhad MR (2019) Ratiometric fluorescent nanoprobes for visual detection: design principles and recent advances—a review. Analytica chimica acta 1079:30–58

    Article  CAS  PubMed  Google Scholar 

  119. Liu H, Jia L, Wang Y, Wang M, Gao Z, Ren X (2019) Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters. Analytical and bioanalytical chemistry 411:2531–2543

    Article  CAS  PubMed  Google Scholar 

  120. Liu J, Zhang S, Zhao B, Shen C, Zhang X, Yang G (2019) A novel triarylboron based ratiometric fluorescent probe for in vivo targeting and specific imaging of cancer cells expressing abnormal concentration of GGT. Biosensors and Bioelectronics 142:111497

    Article  CAS  PubMed  Google Scholar 

  121. Li X, Hu Y, Li X, Ma H (2019)Mitochondria-immobilized near-infrared ratiometric fluorescent pH probe to evaluate cellular mitophagy. Analytical chemistry 91:11409–11416

    Article  CAS  PubMed  Google Scholar 

  122. Deng T, Hu S, Zhao L, Wu S, Liu W, Chen T, Fu T, Wang H, Shi H, Huang X-a(2019) A ratiometric fluorescent probe for sensitive determination of the important glycopeptide antibiotic vancomycin. Analytical and Bioanalytical Chemistry 411:8103–8111

    Article  CAS  PubMed  Google Scholar 

  123. Panigrahi SK, Mishra AK (2019) Inner filter effect in fluorescence spectroscopy: as a problem and as a solution. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 41:100318

    Article  Google Scholar 

  124. Wang J, Wu Y, Zhou P, Yang W, Tao H, Qiu S, Feng C (2018) A novel fluorescent aptasensor for ultrasensitive and selective detection of acetamiprid pesticide based on the inner filter effect between gold nanoparticles and carbon dots. Analyst 143:5151–5160

    Article  CAS  PubMed  Google Scholar 

  125. Wei J, Yang Y, Dong J, Wang S, Li P (2019) Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots. Microchimica Acta 186:1–9

    Article  CAS  Google Scholar 

  126. Li C, Liu W, Sun X, Pan W, Yu G, Wang J (2018) Excitation dependent emission combined with different quenching manners supports carbon dots to achieve multi-mode sensing. Sensors and Actuators B: Chemical 263:1–9

    Article  CAS  Google Scholar 

  127. Hu Y, Gao Z (2019)Hot-injection strategy for 1-min synthesis of carbon dots from oxygen-containing organic solvents: toward fluorescence sensing of hemoglobin. Dyes and Pigments 165:429–435

    Article  CAS  Google Scholar 

  128. Ma Y, Song Y, Ma Y, Wei F, Xu G, Cen Y, Shi M, Xu X, Hu Q (2018)N-doped carbon dots as a fluorescent probe for the sensitive and facile detection of carbamazepine based on the inner filter effect. New Journal of Chemistry 42:8992–8997

    Article  CAS  Google Scholar 

  129. Yuan Y, Yang L, Liu S, Yang J, Zhang H, Yan J, Hu X (2017)Enzyme-catalyzed Michael addition for the synthesis of warfarin and its determination via fluorescence quenching of L-tryptophan. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 176:183–188

    Article  CAS  Google Scholar 

  130. Ling K, Jiang H, Li Y, Tao X, Qiu C, Li F-R(2016) A self-assembling RNA aptamer-based graphene oxide sensor for the turn-on detection of theophylline in serum. Biosensors and Bioelectronics 86:8–13

    Article  CAS  PubMed  Google Scholar 

  131. Rankin C, Fuller E, Hamor K, Gabarra S, Shields T (2006) A simple fluorescent biosensor for theophylline based on its RNA aptamer. Nucleosides, Nucleotides, and Nucleic Acids 25:1407–1424

    Article  CAS  PubMed  Google Scholar 

  132. Li M, Sato Y, Nishizawa S, Seino T, Nakamura K, Teramae N (2009)2-Aminopurine-modified abasic-site-containing duplex DNA for highly selective detection of theophylline. Journal of the American Chemical Society 131:2448–2449

    Article  CAS  PubMed  Google Scholar 

  133. Gong X, Yu C, Zhang Y, Sun Y, Ye L, Li J (2019) Carbon nanoparticle-protected RNA aptasensor for amplified fluorescent determination of theophylline in serum based on nuclease-aided signal amplification. RSC advances 9:33898–33902

    Article  CAS  Google Scholar 

  134. Li X, Song J, Wang Y, Cheng T (2013) Cyclically amplified fluorescent detection of theophylline and thiamine pyrophosphate by coupling self-cleaving RNA ribozyme with endonuclease. Analytica Chimica Acta 797:95–101

    Article  CAS  PubMed  Google Scholar 

  135. Lam BJ, Joyce GF (2011) An isothermal system that couples ligand-dependent catalysis to ligand-independent exponential amplification. Journal of the American Chemical Society 133:3191–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kjelstrup MV, Nielsen LD, Hansen-Bruhn M, Gothelf KV (2018) A DNA-based assay for digoxin detection. Biosensors 8:19

    Article  PubMed Central  Google Scholar 

  137. González GP, Hernando PF, Alegría JSD (2009) A MIP-based flow-through fluoroimmunosensor as an alternative to immunosensors for the determination of digoxin in serum samples. Analytical and bioanalytical chemistry 394:963–970

    Article  Google Scholar 

  138. González GP, Hernando PF, Alegría JD (2008) Determination of digoxin in serum samples using a flow-through fluorosensor based on a molecularly imprinted polymer. Biosensors and Bioelectronics 23:1754–1758

    Article  PubMed  Google Scholar 

  139. Li C, Zhang Y, Eremin SA, Yakup O, Yao G, Zhang X (2017) Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA. Food chemistry 227:48–54

    Article  CAS  PubMed  Google Scholar 

  140. Ho TYJ, Chan C-C, Chan K, Wang YC, Lin J-T, Chang C-M, Chen C-S(2013) Development of a novel bead-based 96-well filtration plate competitive immunoassay for the detection of Gentamycin. Biosensors and Bioelectronics 49:126–132

    Article  CAS  PubMed  Google Scholar 

  141. Beloglazova N, Shmelin P, Eremin S (2016) Sensitive immunochemical approaches for quantitative (FPIA) and qualitative (lateral flow tests) determination of gentamicin in milk. Talanta 149:217–224

    Article  CAS  PubMed  Google Scholar 

  142. Kaur G, Singh A, Venugopalan P, Kaur N, Singh N (2016) Selective recognition of lithium (i) ions using Biginelli based fluorescent organic nanoparticles in an aqueous medium. RSC advances 6:1792–1799

    Article  CAS  Google Scholar 

  143. Rochat S, Grote Z, Severin K (2009)Ruthenium-based metallacrown complexes for the selective detection of lithium ions in water and in serum by fluorescence spectroscopy. Organic & Biomolecular Chemistry 7:1147–1153

    Article  CAS  Google Scholar 

  144. Stubing D, Heng S, Abell A (2016) Crowned spiropyran fluoroionophores with a carboxyl moiety for the selective detection of lithium ions. Organic & biomolecular chemistry 14:3752–3757

    Article  CAS  Google Scholar 

  145. Sorouraddin M-H, Imani-Nabiyyi A, Najibi-Gehraz SA, Rashidi M-R(2014) A new fluorimetric method for determination of valproic acid using TGA-capped CdTe quantum dots as proton sensor. Journal of luminescence 145:253–258

    Article  CAS  Google Scholar 

  146. Wahba M, El-Enany N, Belal F (2015) Application of the Stern–Volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations. Analytical Methods 7:10445–10451

    Article  CAS  Google Scholar 

  147. Hatefi A, Rahimpour E, Khoubnasabjafari M, Edalat M, Jouyban-Gharamaleki V, Alvani-Alamdari S, Nokhodchi A, Pournaghi-Azar MH, Jouyban A (2019) A single-shot diagnostic platform based on copper nanoclusters coated with cetyl trimethylammonium bromide for determination of carbamazepine in exhaled breath condensate. Microchimica Acta 186:1–8

    Article  CAS  Google Scholar 

  148. Wang PP, Simpson E, Meucci V, Morrison M, Lunetta S, Zajac M, Boeckx R (1991) Cyclosporine monitoring by fluorescence polarization immunoassay. Clinical biochemistry 24:55–58

    Article  PubMed  Google Scholar 

  149. Smirnova T, Nevryueva N, Shtykov S, Kochubei V, Zhemerichkin D (2009) Determination of warfarin by sensitized fluorescence using organized media. Journal of Analytical Chemistry 64:1114

    Article  CAS  Google Scholar 

  150. Kumar P, Kumar V, Gupta R (2017) Detection of the anticoagulant drug warfarin by palladium complexes. Dalton Transactions 46:10205–10209

    Article  CAS  PubMed  Google Scholar 

  151. Wang M, Tian B, Xue Y, Li R, Zhai T, Tan L (2020) Determination of aminophylline based on fluorescence quenching of amino-functionalized graphene quantum dots induced by photoilluminated riboflavin-aminophylline system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118306

  152. Duan H, Li L, Wang X, Wang Y, Li J, Luo C (2015) A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 139:374–379

    Article  CAS  Google Scholar 

  153. Nirala NR, Harel Y, Lellouche J-P, Shtenberg G (2020) Ultrasensitive haptoglobin biomarker detection based on amplified chemiluminescence of magnetite nanoparticles. Journal of nanobiotechnology 18:1–10

    Article  Google Scholar 

  154. He Y, Xu B, Li W, Yu H (2015) Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. Journal of agricultural and food chemistry 63:2930–2934

    Article  CAS  PubMed  Google Scholar 

  155. Qi Y, Xiu F-R, Yu G, Huang L, Li B (2017) Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: a new signal amplification mechanism. Biosensors and Bioelectronics 87:439–446

    Article  CAS  PubMed  Google Scholar 

  156. Zhang Z, Zhang S, Zhang X (2005) Recent developments and applications of chemiluminescence sensors. Analytica Chimica Acta 541:37–46

    Article  CAS  Google Scholar 

  157. Tiwari A, Dhoble S (2018) Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta 180:1–11

    Article  CAS  PubMed  Google Scholar 

  158. Qi Y, Li B (2013) Enhanced effect of aggregated gold nanoparticles on luminol chemiluminescence system and its analytical application. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 111:1–6

    Article  CAS  Google Scholar 

  159. Haghighi B, Bozorgzadeh S (2010) Flow injection chemiluminescence determination of isoniazid using luminol and silver nanoparticles. Microchemical journal 95:192–197

    Article  CAS  Google Scholar 

  160. Liu B, He Y, Duan C, Li N, Cui H (2011) Platinum nanoparticle-catalyzedlucigenin–hydrazine chemiluminescence. Journal of Photochemistry and Photobiology A: Chemistry 217:62–67

    Article  CAS  Google Scholar 

  161. Zhang H, Zhang L, Lu C, Zhao L, Zheng Z (2012) CdTe nanocrystals-enhanced chemiluminescence from peroxynitrous acid–carbonate and its application to the direct determination of nitrite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 85:217–222

    Article  CAS  Google Scholar 

  162. Wu J, Fu X, Xie C, Yang M, Fang W, Gao S (2011) TiO2 nanoparticles-enhanced luminol chemiluminescence and its analytical applications in organophosphate pesticide imprinting. Sensors and Actuators B: Chemical 160:511–516

    Article  CAS  Google Scholar 

  163. Iranifam M, Fathinia M, Rad TS, Hanifehpour Y, Khataee A, Joo S (2013) A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol. Talanta 107:263–269

    Article  CAS  PubMed  Google Scholar 

  164. Chen W, Hong L, Liu A-L, Liu J-Q, Lin X-H, Xia X-H(2012) Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic. Talanta 99:643–648

    Article  CAS  PubMed  Google Scholar 

  165. Li Q, Zhang L, Li J, Lu C (2011)Nanomaterial-amplified chemiluminescence systems and their applications in bioassays. TrAC Trends in Analytical Chemistry 30:401–413

    Article  Google Scholar 

  166. Khataee A, Hasanzadeh A, Iranifam M, Fathinia M, Hanifehpour Y, Joo S (2014) CuO nanosheets-enhanced flow-injection chemiluminescence system for determination of vancomycin in water, pharmaceutical and human serum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 122:737–743

    Article  CAS  Google Scholar 

  167. Song H, Su Y, Zhang L, Lv Y (2019) Quantum dots-based chemiluminescence probes: an overview. Luminescence 34:530–543

    Article  PubMed  Google Scholar 

  168. Chen H, Lin L, Li H, Lin J-M(2014) Quantum dots-enhanced chemiluminescence: mechanism and application. Coordination Chemistry Reviews 263:86–100

    Article  Google Scholar 

  169. Khataee A, Lotfi R, Hasanzadeh A (2015) A novel permanganate–morin–CdS quantum dots flow injection chemiluminescence system for sensitive determination of vancomycin. RSC advances 5:82645–82653

    Article  CAS  Google Scholar 

  170. Guan G, Yang L, Mei Q, Zhang K, Zhang Z, Han M-Y(2012) Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides. Analytical chemistry 84:9492–9497

    Article  CAS  PubMed  Google Scholar 

  171. Zhang Z-F, Cui H, Lai C-Z, Liu L-J(2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Analytical chemistry 77:3324–3329

    Article  CAS  PubMed  Google Scholar 

  172. Duan C-F, Cui H (2009)Time-tunable autocatalytic lucigenin chemiluminescence initiated by platinum nanoparticles and ethanol. Chemical communications:2574–2576

  173. Yang L, Guan G, Wang S, Zhang Z (2012)Nano-anatase-enhanced peroxyoxalate chemiluminescence and its sensing application. The Journal of Physical Chemistry C 116:3356–3362

    Article  CAS  Google Scholar 

  174. Marquette CA, Blum LJ (2006) Applications of the luminol chemiluminescent reaction in analytical chemistry. Analytical and bioanalytical chemistry 385:546–554

    Article  CAS  PubMed  Google Scholar 

  175. Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, Porter D, Shi X, Vallyathan V, Castranova V (2009) Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Particle and fibre toxicology 6:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature nanotechnology 2:577–583

    Article  CAS  PubMed  Google Scholar 

  177. Rezaei B, Ensafi AA, Zarei L (2012) Fast and sensitive chemiluminescence assay of aminophylline in human serum using luminol–diperiodatoargentate(III) system catalyzed by coated iron nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 90:223–229

    Article  CAS  Google Scholar 

  178. Wang Z, Zhang Z, Fu Z, Luo W, Zhang X (2004)Flow-injection chemiluminescence determination of aminomethylbenzoic acid and aminophylline based on N-bromosuccinimide–luminol reaction. Talanta 62:611–617

    Article  CAS  PubMed  Google Scholar 

  179. Lee SH, Li M, Suh JK (2003) Determination of carbamazepine by chemiluminescence detection using chemically prepared tris (2, 2′-bipyridine) ruthenium (III) as oxidant. Analytical sciences 19:903–906

    Article  CAS  PubMed  Google Scholar 

  180. Wei G, Dang G, Li H (2007) Ultrasensitive assay of clindamycin in medicine and bio-fluids with chemiluminescence detection. Luminescence: The journal of biological and chemical luminescence 22:534–539

    Article  CAS  Google Scholar 

  181. L.H. Santos, A. Araújo, B. Reis, M. Montenegro, Development of a multicommutated flow system with chemiluminometric detection for quantification of gentamicin in pharmaceuticals, Journal of Automated Methods and Management in Chemistry, 2010 (2010).

  182. Fernández-Ramos JM, García-Campaña AM, Alés-Barrero F, Bosque-Sendra JM (2006) Determination of gentamicin in pharmaceutical formulations using peroxyoxalate chemiluminescent detection in flow-injection analysis. Talanta 69:763–768

    Article  PubMed  Google Scholar 

  183. Iranifam M, Hasanzadeh A, Fathinia M, Khataee A, Mousavi S (2014)Flow-injection chemiluminescence determination of gentamicin: optimization by central composite design. Luminescence 29:230–238

    Article  CAS  PubMed  Google Scholar 

  184. Zhou M-x, Guan C-y, Chen G, Xie X-y, Wu S-h(2005) Determination of theophylline concentration in serum by chemiluminescent immunoassay. Journal of Zhejiang University SCIENCE B 6:1148–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhou M, Chen Q, Wang A, Li J, Ma Y (2019)Flow-injection chemiluminescence of the luminol–potassium periodate system enhanced by TGA–capped CdTe quantum dots for the determination of theophylline. Luminescence 34:673–679

    Article  CAS  PubMed  Google Scholar 

  186. Roda A, Zangheri M, Calabria D, Mirasoli M, Caliceti C, Quintavalla A, Lombardo M, Trombini C, Simoni P (2019) A simple smartphone-based thermochemiluminescent immunosensor for valproic acid detection using 1, 2-dioxetane analogue-doped nanoparticles as a label. Sensors and Actuators B: Chemical 279:327–333

    Article  CAS  Google Scholar 

  187. Cao J, Wang H, Liu Y (2015) Determination of l-thyroxine in pharmaceutical preparations by flow injection analysis with chemiluminescence detection based on the enhancement of the luminol–KMnO4 reaction in a micellar medium. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 140:162–165

    Article  CAS  Google Scholar 

  188. Huang Y, Zhao S, Shi M, Liu J, Liang H (2012) Microchip electrophoresis coupled with on-line magnetic separation and chemiluminescence detection for multiplexed immunoassay. Electrophoresis 33:1198–1204

    Article  CAS  PubMed  Google Scholar 

  189. Lima HRS, da Silva JS, de Oliveira Farias EA, Teixeira PRS, Eiras C, Nunes LCC (2018) Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens. Bioelectron. 108:27–37

    Article  CAS  PubMed  Google Scholar 

  190. Cesewski E, Johnson BN (2020) Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 112214

  191. E.O. Blair, D.K. Corrigan, A review of microfabricated electrochemical biosensors for DNA detection, Biosens. Bioelectron., (2019).

  192. Vidal JC, Bonel L, Ezquerra A, Hernández S, Bertolín JR, Cubel C, Castillo JR (2013) Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosens. Bioelectron. 49:146–158

    Article  CAS  PubMed  Google Scholar 

  193. El Harrad L, Bourais I, Mohammadi H, Amine A (2018) Recent advances in electrochemical biosensors based on enzyme inhibition for clinical and pharmaceutical applications. Sensors 18:164

    Article  PubMed Central  Google Scholar 

  194. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim. Acta 183:2063–2083

    Article  CAS  Google Scholar 

  195. Rasheed PA, Sandhyarani N (2017) Carbon nanostructures as immobilization platform for DNA: a review on current progress in electrochemical DNA sensors. Biosens. Bioelectron. 97:226–237

    Article  PubMed  Google Scholar 

  196. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87:230–249

    Article  CAS  PubMed  Google Scholar 

  197. Sadik OA, Aluoch AO, Zhou A (2009) Status of biomolecular recognition using electrochemical techniques. Biosens. Bioelectron. 24:2749–2765

    Article  CAS  PubMed  Google Scholar 

  198. Farghaly OA, Hameed RA, Abu-Nawwas A-AH (2014) Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci 9:3287–3318

    Google Scholar 

  199. Zhu Y-H, Zhang Z-L, Pang D-W(2005) Electrochemical oxidation of theophylline at multi-wall carbon nanotube modified glassy carbon electrodes. J. Electroanal. Chem. 581:303–309

    Article  CAS  Google Scholar 

  200. Chiarotto I, Mattiello L, Pandolfi F, Rocco D, Feroci M, Petrucci R (2019) Electrochemical oxidation of theophylline in organic solvents: HPLC-PDA-ESI-MS/MS analysis of the oxidation products. ChemElectroChem 6:4511–4521

    Article  CAS  Google Scholar 

  201. Ahn JK, Park KS, Won BY, Park HG (2015) A novel electrochemical method to detect theophylline utilizing silver ions captured within abasic site-incorporated duplex DNA. Biosens. Bioelectron. 67:590–594

    Article  CAS  PubMed  Google Scholar 

  202. Ferapontova EE, Olsen EM, Gothelf KV (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J. Am. Chem. Soc. 130:4256–4258

    Article  CAS  PubMed  Google Scholar 

  203. Wang Y, Ding Y, Li L, Hu P (2018)Nitrogen-doped carbon nanotubes decorated poly (L-Cysteine) as a novel, ultrasensitive electrochemical sensor for simultaneous determination of theophylline and caffeine. Talanta 178:449–457

    Article  CAS  PubMed  Google Scholar 

  204. Yang S, Yang R, Li G, Li J, Qu L (2010) Voltammetric determination of theophylline at a Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode. Journal of chemical sciences 122:919–926

    Article  CAS  Google Scholar 

  205. Yang YJ, Li W (2015) High sensitive determination of theophylline based on manganese oxide nanoparticles/multiwalled carbon nanotube nanocomposite modified electrode. Ionics 21:1121–1128

    Article  CAS  Google Scholar 

  206. Yin H, Meng X, Su H, Xu M, Ai S (2012) Electrochemical determination of theophylline in foodstuff, tea and soft drinks based on urchin-like CdSe microparticles modified glassy carbon electrode. Food Chem. 134:1225–1230

    Article  CAS  PubMed  Google Scholar 

  207. Sun W, Hu J (2013) Voltammetric determination of theophylline in pharmaceutical formulations using aligned carbon nanotubes (ACNTs) film modified electrode. J. Anal. Chem. 68:694–699

    Article  CAS  Google Scholar 

  208. AbuáZuhri AZ (1994) Adsorptive cathodic stripping voltammetric determination of theophylline at a hanging mercury drop electrode. Analyst 119:1967–1970

    Article  Google Scholar 

  209. Kan X, Liu T, Zhou H, Li C, Fang B (2010) Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination. Microchim. Acta 171:423–429

    Article  CAS  Google Scholar 

  210. Jesny S, Girish Kumar K (2017)Non-enzymatic electrochemical sensor for the simultaneous determination of xanthine, its methyl derivatives theophylline and caffeine as well as its metabolite uric acid. Electroanalysis 29:1828–1837

    Article  CAS  Google Scholar 

  211. Gholivand MB, Khodadadian M (2014) Simultaneous voltammetric determination of theophylline and guaifenesin using a multiwalled carbon nanotube-ionic liquid modified glassy carbon electrode. Electroanalysis 26:1975–1983

    Article  CAS  Google Scholar 

  212. Gan T, Zhao A, Wang Z, Liu P, Sun J, Liu Y (2017) An electrochemical sensor based on SiO 2@ TiO 2-embedded molecularly imprinted polymers for selective and sensitive determination of theophylline. J. Solid State Electrochem. 21:3683–3691

    Article  CAS  Google Scholar 

  213. Ferapontova EE, Gothelf KV (2009) Optimization of the electrochemical RNA-aptamer based biosensor for theophylline by using a methylene blue redox label. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 21:1261–1266

    Article  CAS  Google Scholar 

  214. Wang T, Randviir EP, Banks CE (2014) Detection of theophylline utilising portable electrochemical sensors. Analyst 139:2000–2003

    Article  CAS  PubMed  Google Scholar 

  215. Raj MA, John SA (2014) Graphene layer modified glassy carbon electrode for the determination of norepinephrine and theophylline in pharmaceutical formulations. Analytical Methods 6:2181–2188

    Article  Google Scholar 

  216. Ganjali MR, Dourandish Z, Beitollahi H, Tajik S, Hajiaghababaei L, Larijani B (2018) Highly sensitive determination of theophylline based on graphene quantum dots modified electrode. Int. J. Electrochem. Sci 13:2448–2461

    Article  CAS  Google Scholar 

  217. Shu X, Bian F, Wang Q, Qin X, Wang Y (2017) Electrochemical sensor for simultaneous determination of theophylline and caffeine based on a novel poly (folic acid)/graphene composite film modified electrode. Int. J. Electrochem. Sci 12:4251–4264

    Article  CAS  Google Scholar 

  218. Peng A, Yan H, Luo C, Wang G, Ye X, Ding H (2017) Electrochemical determination of theophylline pharmacokinetic under the effect of roxithromycin in rats by the MWNTs/Au/poly-L-lysine modified sensor. Int. J. Electrochem. Sci 12:330–346

    Article  CAS  Google Scholar 

  219. Li Y, Wu S, Luo P, Liu J, Song G, Zhang K, Ye B (2012) Electrochemical behavior and voltammetric determination of theophylline at a glassy carbon electrode modified with graphene/nafion. Anal. Sci. 28:497–502

    Article  CAS  PubMed  Google Scholar 

  220. de Jesus Guedes T, Pio dos Santos WT (2018) Fast and simple electrochemical analysis kit for quality control of narrow therapeutic index drugs. Electroanalysis 30:1740–1749

    Article  Google Scholar 

  221. Mekassa B, Tessema M, Chandravanshi BS (2017) Simultaneous determination of caffeine and theophylline using square wave voltammetry at poly (l-aspartic acid)/functionalized multi-walled carbon nanotubes composite modified electrode. Sensing and bio-sensing research 16:46–54

    Article  Google Scholar 

  222. Yang YJ, Guo L, Zhang W (2016) The electropolymerization of CTAB on glassy carbon electrode for simultaneous determination of dopamine, uric acid, tryptophan and theophylline. J. Electroanal. Chem. 768:102–109

    Article  CAS  Google Scholar 

  223. Zhao G-C, Yang X (2010) A label-free electrochemical RNA aptamer for selective detection of theophylline. Electrochem. Commun. 12:300–302

    Article  Google Scholar 

  224. Ferapontova EE, Shipovskov S, Gorton L (2007) Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes. Biosens. Bioelectron. 22:2508–2515

    Article  CAS  PubMed  Google Scholar 

  225. Aswini K, Mohan AV, Biju V (2016) Molecularly imprinted poly (4-amino-5-hydroxy-2, 7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor. Materials Science and Engineering: C 65:116–125

    Article  CAS  Google Scholar 

  226. Malode SJ, Shetti NP, Nandibewoor ST (2012) Voltammetric behavior of theophylline and its determination at multi-wall carbon nanotube paste electrode. Colloids and Surfaces B: Biointerfaces 97:1–6

    Article  CAS  PubMed  Google Scholar 

  227. Güney S, Cebeci FC (2015) Selective electrochemical sensor for theophylline based on an electrode modified with imprinted sol–gel film immobilized on carbon nanoparticle layer. Sensors and Actuators B: Chemical 208:307–314

    Article  Google Scholar 

  228. Yang G, Zhao F, Zeng B (2014) Facile fabrication of a novel anisotropic gold nanoparticle–chitosan–ionic liquid/graphene modified electrode for the determination of theophylline and caffeine. Talanta 127:116–122

    Article  CAS  PubMed  Google Scholar 

  229. Zi L, Li J, Mao Y, Yang R, Qu L (2012) High sensitive determination of theophylline based on gold nanoparticles/l-cysteine/Graphene/Nafion modified electrode. Electrochim. Acta 78:434–439

    Article  CAS  Google Scholar 

  230. Chen X, Guo Z, Tang Y, Shen Y, Miao P (2018) A highly sensitive gold nanoparticle-based electrochemical aptasensor for theophylline detection. Anal. Chim. Acta 999:54–59

    Article  CAS  PubMed  Google Scholar 

  231. MansouriMajd S, Teymourian H, Salimi A, Hallaj R (2013) Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode. Electrochim. Acta 108:707–716

    Article  CAS  Google Scholar 

  232. Gao Y, Wang H, Guo L (2013) Simultaneous determination of theophylline and caffeine by large mesoporous carbon/Nafion modified electrode. J. Electroanal. Chem. 706:7–12

    Article  CAS  Google Scholar 

  233. Teixeira JG, Veiga A, Carvalho AJP, Teixeira DM (2013)Electro-oxidation of carbamazepine metabolites: characterization and influence in the voltammetric determination of the parent drug. Electrochim. Acta 108:51–65

    Article  Google Scholar 

  234. Kalanur SS, Seetharamappa J (2010) Electrochemical oxidation of bioactive carbamazepine and its interaction with DNA. Anal. Lett. 43:618–630

    Article  CAS  Google Scholar 

  235. Domínguez JNR, González T, Palo P, Sánchez-Martín J (2010) Electrochemical advanced oxidation of carbamazepine on boron-doped diamond anodes. Influence of operating variables. Industrial & Engineering Chemistry Research 49:8353–8359

    Article  Google Scholar 

  236. García-Gómez C, Drogui P, Zaviska F, Seyhi B, Gortáres-Moroyoqui P, Buelna G, Neira-Sáenz C, Estrada-Alvarado M, Ulloa-Mercado R (2014) Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes. Journal of Electroanalytical Chemistry 732:1–10

    Article  Google Scholar 

  237. Pruneanu S, Pogacean F, Biris AR, Ardelean S, Canpean V, Blanita G, Dervishi E, Biris AS (2011) Novel graphene-gold nanoparticle modified electrodes for the high sensitivity electrochemical spectroscopy detection and analysis of carbamazepine. The Journal of Physical Chemistry C 115:23387–23394

    Article  CAS  Google Scholar 

  238. Lavanya N, Sekar C, Ficarra S, Tellone E, Bonavita A, Leonardi S, Neri G (2016) A novel disposable electrochemical sensor for determination of carbamazepine based on Fe doped SnO2 nanoparticles modified screen-printed carbon electrode. Materials Science and Engineering: C 62:53–60

    Article  CAS  Google Scholar 

  239. Tarahomi S, Rounaghi GH, Zavar MHA, Daneshvar L (2018) Electrochemical sensor based on TiO2 nanoparticles/nafion biocompatible film modified glassy carbon electrode for carbamazepine determination in pharmaceutical and urine samples. J. Electrochem. Soc. 165:B946

    Article  CAS  Google Scholar 

  240. Atkins S, Gonzalez-Rodriguez J, Sevilla J, Blazquez M, Pineda T, Jimenez-Perez R (2013) Electrochemical reduction of carbamazepine in ethanol and water solutions using a glassy carbon electrode. International Journal of Electrochemical Science 8:2056–2068

    CAS  Google Scholar 

  241. Veiga A, Dordio A, Carvalho AP, Teixeira DM, Teixeira JG (2010)Ultra-sensitive voltammetric sensor for trace analysis of carbamazepine. Anal. Chim. Acta 674:182–189

    Article  CAS  PubMed  Google Scholar 

  242. Kalanur SS, Jaldappagari S, Balakrishnan S (2011) Enhanced electrochemical response of carbamazepine at a nano-structured sensing film of fullerene-C60 and its analytical applications. Electrochim. Acta 56:5295–5301

    Article  CAS  Google Scholar 

  243. Daneshvar L, Rounaghi G, E'shaghi Z, Chamsaz M, Tarahomi S (2016) Electrochemical determination of carbamazepin in the presence of paracetamol using a carbon ionic liquid paste electrode modified with a three-dimensionalgraphene/MWCNT hybrid composite film. J. Mol. Liq. 215:316–322

    Article  CAS  Google Scholar 

  244. Unnikrishnan B, Mani V, Chen S-M(2012) Highly sensitive amperometric sensor for carbamazepine determination based on electrochemically reduced graphene oxide–single-walled carbon nanotube composite film. Sensors and Actuators B: Chemical 173:274–280

    Article  CAS  Google Scholar 

  245. Liu L-H, Duan C-Q, Gao Z-N(2012) Electrochemical behaviors and electrochemical determination of carbamazepine at ionic liquid modified carbon paste electrode in the presence of sodium dodecyl sulfate. J. Serb. Chem. Soc. 77:483–496

    Article  CAS  Google Scholar 

  246. Atkins S, Sevilla J, Blazquez M, Pineda T, Gonzalez-Rodriguez J (2010) Electrochemical behaviour of carbamazepine in acetonitrile and dimethylformamide using glassy carbon electrodes and microelectrodes. Electroanalysis 22:2961–2966

    Article  CAS  Google Scholar 

  247. Daneshvar L, Rounaghi GH (2017) An electrochemical sensing platform for carbamazepine determination based on trimetallic Au-Ag-Pd dendritic nanopatricles, supramolecular β-cyclodextrin and [bmim] NTF2 ionic liquids. J. Electrochem. Soc. 164:B177

    Article  CAS  Google Scholar 

  248. Trišović NP, Božić B, Petrović SD, Tadić SJ, Avramov Ivić M (2014) Electrochemical characterization and determination of carbamazepine as pharmaceutical standard and tablet content on gold electrode. Hemijska industrija 68:207–212

    Article  Google Scholar 

  249. Wang H, Pan M, Su YO, Tsai S, Kao C, Sun S, Lin W (2011) Comparison of Differential Pulse Voltammetry (DPV)—a new method of carbamazepine analysis—with Fluorescence Polarization Immunoassay (FPIA). J. Anal. Chem. 66:415–420

    Article  CAS  Google Scholar 

  250. Jamshidi M, Nematollahi D (2017) Green electrochemical synthesis of N-phenylquinoneimine derivatives: dual action of 4-morpholinoaniline and N-(4-aminophenyl) acetamide. ACS Sustainable Chemistry & Engineering 5:9423–9430

    Article  CAS  Google Scholar 

  251. Wahedi K, Amooshahi P, Jamshidi M, Khazalpour S (2020) Electrochemical assessment of EC and ECE mechanisms for caffeic acid in the presence of aromatic amines. Analytical and Bioanalytical Chemistry Research 7:345–353

    CAS  Google Scholar 

  252. Nematollahi D, Ghasemi F, Khazalpour S, Varmaghani F (2016) Kinetic study on electrochemical oxidation of catechols in the presence of cycloheptylamine and aniline: experiments and digital simulation. Journal of Chemical Sciences 128:1887–1894

    Article  CAS  Google Scholar 

  253. Mazloum-Ardakani M, Rajabzadeh N, Dehghani-Firouzabadi A, Benvidi A, Mirjalili B, Zamani L (2016) Development of an electrode modified on the basis of carbon nanoparticles and reduced graphene oxide for simultaneous determination of isoproterenol, uric acid and tryptophan in real samples. J. Electroanal. Chem. 760:151–157

    Article  CAS  Google Scholar 

  254. Mazloum-Ardakani M, Sheikh-Mohseni MA, Mirjalili B-F, Ahmadi R, Mirhoseini MA (2015) A nanocomposite electrocatalyst for the electro-oxidation of isoproterenol and its application as a sensor. Chinese Journal of Catalysis 36:1273–1279

    Article  CAS  Google Scholar 

  255. Palakollu VN, Chiwunze TE, Gill AA, Thapliyal N, Maru SM, Karpoormath R (2017) Electrochemical sensitive determination of isoprenaline at β-cyclodextrin functionalized graphene oxide and electrochemically generated acid yellow 9 polymer modified electrode. J. Mol. Liq. 248:953–962

    Article  CAS  Google Scholar 

  256. Beitollahi H, Salimi H (2016) A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and graphene. J. Electrochem. Soc. 163:H1157

    Article  CAS  Google Scholar 

  257. Karimi-Maleh H, Rostami S, Gupta VK, Fouladgar M (2015) Evaluation of ZnO nanoparticle ionic liquid composite as a voltammetric sensing of isoprenaline in the presence of aspirin for liquid phase determination. J. Mol. Liq. 201:102–107

    Article  CAS  Google Scholar 

  258. Mazloum-Ardakani M, Sabaghian F, Khoshroo A, Naeimi H (2014) Simultaneous determination of the concentrations of isoproterenol, uric acid, and folic acid in solution using a novel nanostructure-based electrochemical sensor. Chinese Journal of Catalysis 35:565–572

    Article  CAS  Google Scholar 

  259. Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A, Naeimi H, Moradian M (2014) Simultaneous determination of isoproterenol, acetaminophen and folic acid using a novel nanostructure-based electrochemical sensor. Electroanalysis 26:275–284

    Article  CAS  Google Scholar 

  260. Beitollahi H, Movlaee K, Ganjali MR, Norouzi P (2017) A sensitive graphene and ethyl 2-(4-ferrocenyl-[1, 2, 3] triazol-1-yl) acetate modified carbon paste electrode for the concurrent determination of isoproterenol, acetaminophen, tryptophan and theophylline in human biological fluids. J. Electroanal. Chem. 799:576–582

    Article  CAS  Google Scholar 

  261. Tajik S, Taher MA, Beitollahi H (2014) Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sensors and Actuators B: Chemical 197:228–236

    Article  CAS  Google Scholar 

  262. Wong A, Santos AM, Silva TA, Fatibello-Filho O (2018) Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT: PSS. Talanta 183:329–338

    Article  CAS  PubMed  Google Scholar 

  263. Dourandish Z, Beitollahi H (2018) Electrochemical sensing of isoproterenol using graphite screen-printed electrode modified with graphene quantum dots. Anal. Bioanal. Chem 10:192–202

    CAS  Google Scholar 

  264. Beitollahi H, Raoof J-B, Karimi-Maleh H, Hosseinzadeh R (2012) Electrochemical behavior of isoproterenol in the presence of uric acid and folic acid at a carbon paste electrode modified with 2, 7-bis (ferrocenyl ethyl) fluoren-9-one and carbon nanotubes. J. Solid State Electrochem. 16:1701–1707

    Article  CAS  Google Scholar 

  265. Keyvanfard M, Ahmadi M, Karimi F, Alizad K (2014) Voltammetric determination of cysteamine at multiwalled carbon nanotubes paste electrode in the presence of isoproterenol as a mediator. Chin. Chem. Lett. 25:1244–1246

    Article  CAS  Google Scholar 

  266. Gopal P, Reddy TM, Nagaraju C, Narasimha G (2014) Preparation, characterization and analytical application of an electrochemical laccase biosensor towards low level determination of isoprenaline in human serum samples. RSC Advances 4:57591–57599

    Article  CAS  Google Scholar 

  267. Ensafi AA, Karimi-Maleh H (2011) Voltammetric determination of isoproterenol using multiwall carbon nanotubes-ionic liquid paste electrode. Drug testing and analysis 3:325–330

    Article  CAS  PubMed  Google Scholar 

  268. Chen M, Ma X, Li X (2012) Electrochemical determination of isoprenaline using a graphene-modified glassy carbon electrode. J. Solid State Electrochem. 16:3261–3266

    Article  CAS  Google Scholar 

  269. Mohammadi SZ, Beitollahi H, Fadaeian H (2018) Voltammetric determination of isoproterenol using a graphene oxide nano sheets paste electrode. J. Anal. Chem. 73:705–712

    Article  CAS  Google Scholar 

  270. Beitollahi H, Khabazzadeh H, Karimi-Maleh H, Akbari A (2012) Voltammetric determination of isoproterenol using a 5-amino-2′, 4′-dimethoxybiphenyl-2-ol modified carbon nanotube paste electrode. Chin. Chem. Lett. 23:719–722

    Article  CAS  Google Scholar 

  271. Beitollahi H, Sheikhshoaie I (2011) Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI)complex-carbon nanotube paste electrode. Electrochim. Acta 56:10259–10263

    Article  CAS  Google Scholar 

  272. Ensafi AA, Khoddami E, Karimi-Maleh H (2011) Electrocatalytic detection of isoproterenol at a ferrocene-multiwall carbon nanotubes paste electrode. Int. J. Electrochem. Sci 6:2596–2608

    CAS  Google Scholar 

  273. Mohammadi SZ, Beitollahi H, Afzali H (2016) A novel electrochemical nanosensor for voltammetric determination of isoproterenol. ANALYTICAL & BIOANALYTICAL ELECTROCHEMISTRY 8:977–987

    CAS  Google Scholar 

  274. Kutluay A, Aslanoglu M (2010) Electrocatalytic oxidation of isoproterenol and its voltammetric determination in pharmaceuticals and urine samples using a poly (1-methylpyrrole)-DNA modified electrode. J. Acta Chim. Slovenica 57:157–162

    CAS  Google Scholar 

  275. Bonifácio VG, Marcolino LH Jr, Teixeira MF, Fatibello-Filho O (2004) Voltammetric determination of isoprenaline in pharmaceutical preparations using a copper (II) hexacyanoferrate (III) modified carbon paste electrode. Microchem. J. 78:55–59

    Article  Google Scholar 

  276. Mazloum-Ardakani M, Khoshroo A (2014) Electrocatalytic properties of functionalized carbon nanotubes with titanium dioxide and benzofuran derivative/ionic liquid for simultaneous determination of isoproterenol and serotonin. Electrochim. Acta 130:634–641

    Article  CAS  Google Scholar 

  277. Beitollahi H, Mohadesi A, Mohammadi S, Akbari A (2012) Electrochemical behavior of a carbon paste electrode modified with 5-amino-3′, 4′-dimethyl-biphenyl-2-ol/carbon nanotube and its application for simultaneous determination of isoproterenol, acetaminophen and N-acetylcysteine. Electrochim. Acta 68:220–226

    Article  CAS  Google Scholar 

  278. Chitravathi S, Kumaraswamy B, Niranjana E, Chandra U, Mamatha G, Sherigara B (2009) Electrochemical studies of sodium levothyroxine at surfactant modified carbon paste electrode. Int. J. Electrochem. Sci 4:223–237

    CAS  Google Scholar 

  279. Chitravathi S, Swamy BK, Chandra U, Mamatha G, Sherigara B (2010) Electrocatalytic oxidation of sodium levothyroxine with phenyl hydrazine as a mediator at carbon paste electrode: a cyclic voltammetric study. J. Electroanal. Chem. 645:10–15

    Article  CAS  Google Scholar 

  280. Iwamoto M, Webber A, Osteryoung RA (1984) Cathodic reduction of thyroxine and related compounds on silver. Anal. Chem. 56:1202–1206

    Article  CAS  Google Scholar 

  281. Lotfi S, Veisi H (2019) Synthesis and characterization of novel nanocomposite (MWCNTs/CC-SH/Au) and its use as a modifier for construction of a sensitive sensor for determination of low concentration of levothyroxine in real samples. Chem. Phys. Lett. 716:177–185

    Article  CAS  Google Scholar 

  282. He Z, Jin W (2003) Capillary electrophoretic enzyme immunoassay with electrochemical detection for thyroxine. Anal. Biochem. 313:34–40

    Article  CAS  PubMed  Google Scholar 

  283. Mak CK, Wehe CA, Sperling M, Karst U (2015) Identification and quantification of electrochemically generated metabolites of thyroxine by means of liquid chromatography/electrospray-mass spectrometry and countergradient liquid chromatography/inductively coupled plasma-mass spectrometry. J. Chromatogr. A 1419:81–88

    Article  CAS  PubMed  Google Scholar 

  284. Hay ID, Annesley TM, Jiang NS, Gorman CA (1981) Simultaneous determination of D-and L-thyroxine in human serum by liquid chromatography with electrochemical detection. Journal of Chromatography B: Biomedical Sciences and Applications 226:383–390

    Article  CAS  Google Scholar 

  285. Kazemifard AG, Moore DE, Aghazadeh A (2001) Identification and quantitation of sodium-thyroxine and its degradation products by LC using electrochemical and MS detection. J. Pharm. Biomed. Anal. 25:697–711

    Article  CAS  PubMed  Google Scholar 

  286. Kimura T, Nakanishi K, Nakagawa T, Shibukawa A, Matsuzaki K (2005) Simultaneous determination of unbound thyroid hormones in human plasma using high performance frontal analysis with electrochemical detection. J. Pharm. Biomed. Anal. 38:204–209

    Article  CAS  PubMed  Google Scholar 

  287. Li XM, Zhang F, Zhang SS (2008) Capillary electrophoresis enzyme immunoassay for alpha-fetoprotein and thyroxine in human serum with electrochemical detection. J. Sep. Sci. 31:336–340

    Article  CAS  PubMed  Google Scholar 

  288. He Q, Dang X, Hu C, Hu S (2004) The effect of cetyltrimethyl ammonium bromide on the electrochemical determination of thyroxine. Colloids and Surfaces B: Biointerfaces 35:93–98

    Article  CAS  PubMed  Google Scholar 

  289. Prasad BB, Madhuri R, Tiwari MP, Sharma PS (2010)Layer-by-layer assembled molecularly imprinted polymer modified silver electrode for enantioselective detection of d-and l-thyroxine. Anal. Chim. Acta 681:16–26

    Article  CAS  PubMed  Google Scholar 

  290. Gholivand M-B, Solgi M (2018) Simultaneous electrochemical sensing of warfarin and maycophenolic acid in biological samples. Analytica chimica acta 1034:46–55

    Article  CAS  PubMed  Google Scholar 

  291. Gholivand MB, Torkashvand M (2015) Electrooxidation behavior of warfarin in Fe3O4 nanoparticles modified carbon paste electrode and its determination in real samples. Materials Science and Engineering: C 48:235–242

    Article  CAS  Google Scholar 

  292. Taei M, Hasanpour F, Basiri F, Tavakkoli N, Rasouli N (2016) Highly selective differential pulse voltammetric determination of warfarin in pharmaceutical and biological samples using MnFe2O4/MWCNT modified carbon paste electrode. Microchemical Journal 129:166–172

    Article  CAS  Google Scholar 

  293. Taei M, Abedi F (2016) New modified multiwalled carbon nanotubes paste electrode for electrocatalytic oxidation and determination of warfarin in biological and pharmaceutical samples. Chinese Journal of Catalysis 37:436–445

    Article  CAS  Google Scholar 

  294. Rezaei B, Rahmanian O, Ensafi AA (2014) An electrochemical sensor based on multiwall carbon nanotubes and molecular imprinting strategy for warfarin recognition and determination. Sensors and Actuators B: Chemical 196:539–545

    Article  CAS  Google Scholar 

  295. Li Y, Zhang L, Liu J, Zhou S-F, Al-Ghanim KA, Mahboob S, Ye B-C, Zhang X (2016) A novel sensitive and selective electrochemical sensor based on molecularly imprinted polymer on a nanoporous gold leaf modified electrode for warfarin sodium determination. RSC advances 6:43724–43731

    Article  CAS  Google Scholar 

  296. Damiri S, Oskoei YM, Fouladgar M (2016) Highly sensitive voltammetric and impedimetric sensor based on an ionic liquid/cobalt hexacyanoferrate nanoparticle modified multi-walled carbon nanotubes electrode for diclofenac analysis. Journal of Experimental Nanoscience 11:1384–1401

    Article  CAS  Google Scholar 

  297. Gholivand MB, Mohammadi-Behzad L (2015) An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode. Materials Science and Engineering: C 57:77–87

    Article  CAS  Google Scholar 

  298. Hassan SS, Mahmoud WH, Abdel-Samad MS (1998) Direct potentiometry and potentiotitrimetry of warfarin and ibuprofen in pharmaceutical preparations using PVC ferroin-based membrane sensors. Microchimica Acta 129:251–257

    Article  CAS  Google Scholar 

  299. Liu J, Zhang Y, Jiang M, Tian L, Sun S, Zhao N, Zhao F, Li Y (2017) Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring. Biosensors and Bioelectronics 91:714–720

    Article  CAS  PubMed  Google Scholar 

  300. de Jesus Guedes T, Andrade GAR, Lima AB, da Silva RAB, dos Santos WTP (2017) Simple and fast determination of warfarin in pharmaceutical samples using boron-doped diamond electrode in BIA and FIA systems with multiple pulse amperometric detection. Electroanalysis 29:2340–2347

    Article  Google Scholar 

  301. Ghoneim M, Tawfik A (2004) Assay of anti-coagulant drug warfarin sodium in pharmaceutical formulation and human biological fluids by square-wave adsorptive cathodic stripping voltammetry. Analytica chimica acta 511:63–69

    Article  CAS  Google Scholar 

  302. Gonzalez-Rodriguez J, Bellia G, Corrall H, Baron M, Croxton R (2017) An investigation of digoxin by cyclic voltammetry using gold and silver solid electrodes and chemometric analysis. International Journal of Electrochemical Science 12:3050–3062

    Google Scholar 

  303. Ahmadi A, Shirazi H, Pourbagher N, Akbarzadeh A, Omidfar K (2014) An electrochemical immunosensor for digoxin using core–shell gold coated magnetic nanoparticles as labels. Molecular biology reports 41:1659–1668

    Article  CAS  PubMed  Google Scholar 

  304. Bagheri H, Talemi R, Afkhami A (2015) Gold nanoparticles deposited on fluorine-doped tin oxide surface as an effective platform for fabricating a highly sensitive and specific digoxin aptasensor. RSC Advances 5:58491–58498

    Article  CAS  Google Scholar 

  305. Wijesinghe MS, Ngwa W, Chow KF (2020) Direct electrochemical aptamer-based detection of digoxin. ChemistrySelect 5:2408–2411

    Article  CAS  Google Scholar 

  306. Katsu T, Mori Y (1997) Determination of free disopyramide in blood serum in situ using a disopyramide-sensitive membrane electrode. Anal. Chim. Acta 343:79–83

    Article  CAS  Google Scholar 

  307. Öztürk F, Taşdemir IH, Durmuş Z, Kiliç E (2010) Electrochemical behavior of disopyramide and its adsorptive stripping determination in pharmaceutical dosage forms and biological fluids. Collect. Czech. Chem. Commun. 75:685–702

    Article  Google Scholar 

  308. Diculescu VC, Enache TA, Oliveira-Brett AM (2007) Electrochemical oxidation at a glassy carbon electrode of the anti-arrhythmia drug disopyramide. Anal. Lett. 40:2860–2871

    Article  CAS  Google Scholar 

  309. Campuzano S, Gamella M, Serra B, Reviejo A, Pingarron J (2007) Integrated electrochemical gluconic acid biosensor based on self-assembled monolayer-modified gold electrodes. Application to the analysis of gluconic acid in musts and wines. J. Agric. Food. Chem 55:2109–2114

    Article  CAS  PubMed  Google Scholar 

  310. Stredansky M, Martínez JMO, Stredansky M, Labuda J (2017) Multienzyme amperometric gluconic acid biosensor based on nanocomposite planar electrodes for analysis in musts and wines. International Journal of Electrochemical Science:1183–1192

  311. Albanese D, Malvano F, Sannini A, Pilloton R, Di Matteo M (2014) A doped polyaniline modified electrode amperometric biosensor for gluconic acid determination in grapes. Sensors 14:11097–11109

    Article  PubMed  PubMed Central  Google Scholar 

  312. Molinero-Abad B, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2015) Simultaneous amperometric determination of malic and gluconic acids in wine using screen-printed carbon electrodes. Sensors and Actuators B: Chemical 211:250–254

    Article  CAS  Google Scholar 

  313. Cetó X, Céspedes F, Capdevila J, Del Valle M (2011) A new amperometric bienzymatic biosensor based on biocomposites for the determination of gluconic acid in wines. Talanta 85:1207–1212

    Article  PubMed  Google Scholar 

  314. del Torno-de Román L, Alonso-Lomillo MA, Domínguez-Renedo O, Jaureguibeitia A, Arcos-Martínez MJ (2014) GADH screen-printed biosensor for gluconic acid determination in wine samples. Sensors and Actuators B: Chemical 192:56–59

    Article  Google Scholar 

  315. Del Torno-de Román L, Alonso-Lomillo M, Domínguez-Renedo O, Arcos-Martínez M (2013) Gluconic acid determination in wine by electrochemical biosensing. Sensors and Actuators B: Chemical 176:858–862

    Article  Google Scholar 

  316. Kasim EA, Ghandour MA, El-Haty MT, Ahmed MM (2002) Application of stripping voltammetry to the determination of guanethidine. Monatshefte für Chemie/Chemical Monthly 133:1397–1404

    Article  CAS  Google Scholar 

  317. Duan J, He D, Wang W, Liu Y, Wu H, Wang Y, Fu M (2013) Glassy carbon electrode modified with gold nanoparticles for ractopamine and metaproterenol sensing. Chem. Phys. Lett. 574:83–88

    Article  CAS  Google Scholar 

  318. Baytak AK, Aslanoglu M (2015) Decorating carbon nanotubes with nanoparticles of indium tin oxide for the voltammetric determination of metaproterenol. J. Electroanal. Chem. 757:210–215

    Article  CAS  Google Scholar 

  319. Carrum G, Abernethy DR, Sadhukhan M, Wright CE III (1986) Minoxidil analysis in human plasma using high-performance liquid chromatography with electrochemical detection: application to pharmacokinetic studies. Journal of Chromatography B: Biomedical Sciences and Applications 381:127–135

    Article  CAS  Google Scholar 

  320. Dehdashtian S, Hashemi B (2020) Voltammetric sensing of minoxidil using a molecularly imprinted polymer (MIP)-modified carbon paste electrode. Chemical Papers 74:157–165

    Article  CAS  Google Scholar 

  321. Karimian N, Gholivand M, Taherkhani F (2015) Computational design and development of a novel voltammetric sensor for minoxidil detection based on electropolymerized molecularly imprinted polymer. J. Electroanal. Chem. 740:45–52

    Article  CAS  Google Scholar 

  322. Pfaffen V, Ortiz PI (2006) Electrochemical determination of minoxidil in different pharmaceutical formulations by flow injection analysis. Anal. Sci. 22:91–94

    Article  CAS  PubMed  Google Scholar 

  323. Shamsipur M, Pashabadi A, Taherpour AA, Hemmateenejad B, Khosousi T, Parvin MH (2016) Synthesis and characterization of glucose-capped CdSe quantum dots. Electrochemical and computational studies of corresponding carbon-ionic liquid electrode for quantitative determination of minoxidil. J. Electroanal. Chem. 778:116–125

    Article  CAS  Google Scholar 

  324. Ahmadi F, Ghasemi S, Rahimi-Nasrabadi M (2011) Adsorptive cathodic stripping determination of minoxidil in pharmaceutical, cream and shampoo products. Collect. Czech. Chem. Commun. 76:371–382

    Article  CAS  Google Scholar 

  325. Golden MH, Zoutendam PH (1987) The determination of minoxidil in human serum by high-performance liquid chromatography with amperometric detection. J. Pharm. Biomed. Anal. 5:543–551

    Article  CAS  PubMed  Google Scholar 

  326. Doğan T, Anik Ü, Dursun Z (2019) Development of practical electrochemical system for phenytoin detection. ChemistrySelect 4:7704–7708

    Article  Google Scholar 

  327. Bordes A-L, Limoges BT, Brossier P, Degrand C (1997) Simultaneous homogeneous immunoassay of phenytoin and phenobarbital using a Nafion-loaded carbon paste electrode and two redox cationic labels. Anal. Chim. Acta 356:195–203

    Article  CAS  Google Scholar 

  328. de Jesus Guedes T, Alecrim MF, Oliveira FM, Lima AB, Barbosa SL, dos Santos WT (2016) Determination of prazosin in pharmaceutical samples by flow injection analysis with multiple-pulse amperometric detection using boron-doped diamond electrode. J. Solid State Electrochem. 20:2445–2451

    Article  Google Scholar 

  329. Faridbod F, Ganjali MR, Larijani B, Nasli-Esfahani E, Riahi S, Norouzi P (2010) Quantitative analysis of prazosin hydrochloride in pharmaceutical formulation by prazosin potentiometric sensor based on computational investigation. Int J Electrochem Sci 5:653–667

    CAS  Google Scholar 

  330. Arranz A, de Betoño SF, Echevarria C, Moreda JMA, Cid A, Valentín JFA (1999) Voltammetric and spectrophotometric techniques for the determination of the antihypertensive drug Prazosin in urine and formulations. J. Pharm. Biomed. Anal. 21:797–807

    Article  CAS  PubMed  Google Scholar 

  331. Khalil S, Kelzieh A, Ibrahim S (2003)Ion-selective electrode for the determination of prazosin in tablets. J. Pharm. Biomed. Anal. 33:825–829

    Article  CAS  PubMed  Google Scholar 

  332. Zabardasti A, Afrouzi H, Talemi RP (2017) A simple and sensitive methodology for voltammetric determination of valproic acid in human blood plasma samples using 3-aminopropyletriethoxy silane coated magnetic nanoparticles modified pencil graphite electrode. Materials Science and Engineering: C 76:425–430

    Article  CAS  Google Scholar 

  333. ACAR ET, Onar AN (2016) Square wave voltammetric determination of valproic acid in pharmaceutical Preparations. Turkish Journal of Chemistry 40:106–116

    Article  CAS  Google Scholar 

  334. Kotani A, Kotani T, Ishii N, Hakamata H, Kusu F (2014) The effect of hyperglycemia on the pharmacokinetics of valproic acid studied by high-performance liquid chromatography with electrochemical detection. J. Pharm. Biomed. Anal. 97:47–53

    Article  CAS  PubMed  Google Scholar 

  335. Favetta P, Guitton J, Bleyzac N, Dufresne C, Bureau J (2001) New sensitive assay of vancomycin in human plasma using high-performance liquid chromatography and electrochemical detection. Journal of Chromatography B: Biomedical Sciences and Applications 751:377–382

    Article  CAS  PubMed  Google Scholar 

  336. Blidar A, Feier B, Pusta A, Drăgan A-M, Cristea C (2019)Graphene–gold nanostructures hybrid composites screen-printed electrode for the sensitive electrochemical detection of vancomycin. Coatings 9:652

    Article  CAS  Google Scholar 

  337. Hadi M, Mollaei T (2019) Electroanalytical determination of vancomycin at a graphene-modified electrode: comparison of electrochemical property between graphene, carbon nanotube, and carbon black. Electroanalysis 31:1224–1228

    Article  CAS  Google Scholar 

  338. Belal F, El-Ashry SM, El-Kerdawy MM, El-Wasseef DR (2001) Voltametric determination of vancomycin in dosage forms through treatment with nitrous acid. Arzneimittelforschung 51:763–768

    CAS  PubMed  Google Scholar 

  339. Zhang Z, Hu Y, Zhang H, Yao S (2010) Novel layer-by-layer assembly molecularly imprinted sol–gel sensor for selective recognition of clindamycin based on Au electrode decorated by multi-wall carbon nanotube. J. Colloid Interface Sci. 344:158–164

    Article  CAS  PubMed  Google Scholar 

  340. Wong A, Razzino CA, Silva TA, Fatibello-Filho O (2016)Square-wave voltammetric determination of clindamycin using a glassy carbon electrode modified with graphene oxide and gold nanoparticles within a crosslinked chitosan film. Sensors and Actuators B: Chemical 231:183–193

    Article  CAS  Google Scholar 

  341. M.S. Rizk, H.A. Merey, S.M. Tawakkol, M.N. Sweilam, New potentiometric determination of clindamycin hydrochloride in pharmaceuticals, (2013).

  342. Norouzi P, Larijani B, Ezoddin M, Ganjali M (2008)Sub-second adsorption for the fast sub-nanomolar monitoring of Clindamycin in its pure and pharmaceutical samples by fast Fourier transformation with the use of continuous cyclic voltammetry at an Au microelectrode in a flowing system. Materials Science and Engineering: C 28:87–93

    Article  CAS  Google Scholar 

  343. Habib I, Rizk M, El-Aryan TR (2011) Determination of clindamycin in dosage forms and biological samples by adsorption stripping voltammetry with carbon paste electrode. Pharm. Chem. J. 44:705

    Article  CAS  Google Scholar 

  344. Hornedo-Nunez A, Getek T, Korfmacher W, Simenthal F (1990)High-performance liquid chromatography of clindamycin and clindamycin phosphate with electrochemical detection. J. Chromatogr. A 503:217–225

    Article  CAS  Google Scholar 

Download references

Funding

Financial support of this study was provided by deputy of research and technology, Hamadan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Heydari Shayesteh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayesteh, O.H., Mahjub, R., Ranjbar, A. et al. Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs. Microchim Acta 188, 411 (2021). https://doi.org/10.1007/s00604-021-05003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05003-9

Keywords

Navigation