Skip to main content
Log in

Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks.

An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bendicho C, Costas-Mora I, Romero V, Lavilla I (2015) Nanoparticle-enhanced liquid-phase microextraction. TrAC Trends Anal Chem 68:78–87. https://doi.org/10.1016/j.trac.2015.02.007

    Article  CAS  Google Scholar 

  2. Fang C, Dharmarajan R, Megharaj M, Naidu R (2017) Gold nanoparticle-based optical sensors for selected anionic contaminants. TrAC Trends Anal Chem 86:143–154. https://doi.org/10.1016/j.trac.2016.10.008

    Article  CAS  Google Scholar 

  3. Zarei M, Zarei M, Ghasemabadi M (2017) Nanoparticle improved separations: From capillary to slab gel electrophoresis. TrAC Trends Anal Chem 86:56–74. https://doi.org/10.1016/j.trac.2016.11.004

    Article  CAS  Google Scholar 

  4. Toda K, Furue R, Hayami S (2015) Recent progress in applications of graphene oxide for gas sensing: A review. Anal Chim Acta 878:43–53. https://doi.org/10.1016/j.aca.2015.02.002

    Article  CAS  Google Scholar 

  5. Abdelhamid HN, Huang Z, El-Zohry AM et al (2017) A Fast and Scalable Approach for Synthesis of Hierarchical Porous Zeolitic Imidazolate Frameworks and One-Pot Encapsulation of Target Molecules. Inorg Chem 56:9139–9146. https://doi.org/10.1021/acs.inorgchem.7b01191

    Article  CAS  Google Scholar 

  6. Yang Y, Shen K, Lin J et al (2016) A Zn-MOF constructed from electron-rich π-conjugated ligands with an interpenetrated graphene-like net as an efficient nitroaromatic sensor. RSC Adv 6:45475–45481. https://doi.org/10.1039/C6RA00524A

    Article  CAS  Google Scholar 

  7. Yao Q, Bermejo Gómez A, Su J et al (2015) Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chem Mater 27:5332–5339. https://doi.org/10.1021/acs.chemmater.5b01711

    Article  CAS  Google Scholar 

  8. Abdelhamid HN, Bermejo-Gómez A, Martín-Matute B, Zou X (2017) A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan. Microchim Acta 184:3363–3371. https://doi.org/10.1007/s00604-017-2306-0

    Article  CAS  Google Scholar 

  9. Abdelhamid HN, Wu H-F (2015) Reduced graphene oxide conjugate thymine as a new probe for ultrasensitive and selective fluorometric determination of mercury(II) ions. Microchim Acta 182:1609–1617. https://doi.org/10.1007/s00604-015-1461-4

    Article  CAS  Google Scholar 

  10. Abdelhamid HN, Wu H-F (2015) Synthesis and multifunctional applications of quantum nanobeads for label-free and selective metal chemosensing. RSC Adv 5:50494–50504. https://doi.org/10.1039/C5RA07069D

    Article  CAS  Google Scholar 

  11. Abdelhamid HN, Wu H-F (2018) Selective biosensing of Staphylococcus aureus using chitosan quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2017.06.047

  12. Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Microchim Acta 184:389–414. https://doi.org/10.1007/s00604-016-2066-2

    Article  CAS  Google Scholar 

  13. Rasheed PA, Sandhyarani N (2017) Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Microchim Acta 184:981–1000. https://doi.org/10.1007/s00604-017-2143-1

    Article  CAS  Google Scholar 

  14. Wilhelm S, Tavares AJ, Dai Q et al (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1:16014. https://doi.org/10.1038/natrevmats.2016.14

    Article  CAS  Google Scholar 

  15. Hu Q, Sun W, Wang C, Gu Z (2016) Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev 98:19–34. https://doi.org/10.1016/j.addr.2015.10.022

    Article  CAS  Google Scholar 

  16. Dowaidar M, Abdelhamid HN, Hällbrink M et al (2017) Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. Biochim Biophys Acta Gen Subj 1861:2334–2341. https://doi.org/10.1016/j.bbagen.2017.07.002

    Article  CAS  Google Scholar 

  17. Dowaidar M, Abdelhamid HN, Hällbrink M et al (2017) Magnetic Nanoparticle Assisted Self-assembly of Cell Penetrating Peptides-Oligonucleotides Complexes for Gene Delivery. Sci Rep. https://doi.org/10.1038/s41598-017-09803-z

  18. Wu HF, Gopal J, Abdelhamid HN, Hasan N (2012) Quantum dot applications endowing novelty to analytical proteomics. Proteomics 12:2949–2961. https://doi.org/10.1002/pmic.201200295

    Article  CAS  Google Scholar 

  19. Ashour RM, Abdelhamid HN, Abdel-Magied AF et al (2017) Rare Earth Ions Adsorption onto Graphene Oxide Nanosheets. Solvent Extr Ion Exch. https://doi.org/10.1080/07366299.2017.1287509

  20. Manikandan M, Nasser Abdelhamid H, Talib A, Wu H-F (2014) Facile synthesis of gold nanohexagons on graphene templates in Raman spectroscopy for biosensing cancer and cancer stem cells. Biosens Bioelectron 55:180–186. https://doi.org/10.1016/j.bios.2013.11.037

    Article  CAS  Google Scholar 

  21. Gopal J, Abdelhamid HN, Huang JH, Wu HF (2016) Nondestructive detection of the freshness of fruits and vegetables using gold and silver nanoparticle mediated graphene enhanced Raman spectroscopy. Sensors Actuators B Chem 224:413–424. https://doi.org/10.1016/j.snb.2015.08.123

    Article  CAS  Google Scholar 

  22. Kumaran S, Abdelhamid HN, Wu H-F (2017) Quantification analysis of protein and mycelium contents upon inhibition of melanin for: Aspergillus Niger: A study of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). RSC Adv 7:30289–30294. https://doi.org/10.1039/c7ra03741d

    Article  CAS  Google Scholar 

  23. Abdelhamid HN (2016) Laser Assisted Synthesis, Imaging and Cancer Therapy of Magnetic Nanoparticles. Mater Focus 5:305–323. https://doi.org/10.1166/mat.2016.1336

    Article  CAS  Google Scholar 

  24. Abdelhamid HN (2013) Applications of Nanomaterials and Organic Semiconductors for Bacteria & Biomolecules analysis/ biosensing using Laser Analytical Spectroscopy. National Sum-Yat Sen University. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0608113-135030

  25. Abdelhamid HN (2015) Delafossite Nanoparticle as New Functional Materials: Advances in Energy, Nanomedicine and Environmental Applications. Mater Sci Forum 832:28–53. https://doi.org/10.4028/www.scientific.net/MSF.832.28

    Article  Google Scholar 

  26. Abdelhamid HN (2016) Nanoparticles as Pharmaceutical Agents. MJ Anes 1:003–003

    Google Scholar 

  27. Iqbal MN, Abdel-Magied AF, Abdelhamid HN et al (2017) Mesoporous Ruthenium Oxide: A Heterogeneous Catalyst for Water Oxidation. ACS Sustain Chem Eng 5:9651–9656. https://doi.org/10.1021/acssuschemeng.7b02845

    Article  CAS  Google Scholar 

  28. Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization TOF-MS. Rapid Commun Mass Spectrom 2:151

    Article  CAS  Google Scholar 

  29. Lu M, Yang X, Yang Y et al (2017) Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules. Nano 7:87. https://doi.org/10.3390/nano7040087

    Google Scholar 

  30. Lei C, Qian K, Noonan O et al (2013) Applications of nanomaterials in mass spectrometry analysis. Nano 5:12033. https://doi.org/10.1039/c3nr04194h

    CAS  Google Scholar 

  31. Abdelhamid HN (2016) Ionic liquids for mass spectrometry: Matrices, separation and microextraction. TrAC Trends Anal Chem 77:122–138. https://doi.org/10.1016/j.trac.2015.12.007

    Article  CAS  Google Scholar 

  32. Abdelhamid HN (2017) Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. TrAC Trends Anal Chem 89:68–98. https://doi.org/10.1016/j.trac.2017.01.012

    Article  CAS  Google Scholar 

  33. Abdelhamid HN, Wu H-F (2014) Ionic Liquid Matrices for Mass Spectrometry: Design, Synthesis, and Applications. Ref Modul Chem Mol Sci Chem Eng. https://doi.org/10.1016/B978-0-12-409547-2.11016-9

  34. Abdelhamid HN (2015) Ionic Liquids Matrices for Laser Assisted Desorption/Ionization Mass Spectrometry. Mass Spectrom Purif Tech 1:109–119. https://doi.org/10.4172/2469-9861.1000109

    Article  Google Scholar 

  35. Cha S, Yeung ES (2007) Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal Chem 79:2373–2385. https://doi.org/10.1021/ac062251h

    Article  CAS  Google Scholar 

  36. Taira S, Sugiura Y, Moritake S et al (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 80:4761–4766. https://doi.org/10.1021/ac800081z

    Article  CAS  Google Scholar 

  37. Wyatt MF, Ding S, Stein BK et al (2010) Analysis of various organic and organometallic compounds using nanostructure-assisted laser desorption/ionization time-of-flight mass spectrometry (NALDI-TOFMS). J Am Soc Mass Spectrom 21:1256–1259. https://doi.org/10.1016/j.jasms.2010.03.038

    Article  CAS  Google Scholar 

  38. Moening TN, Brown VL, He L et al (2016) Matrix-enhanced nanostructure initiator mass spectrometry (ME-NIMS) for small molecule detection and imaging. Anal Methods 8:8234–8240. https://doi.org/10.1039/C6AY02753A

    Article  CAS  Google Scholar 

  39. Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399:243–246. https://doi.org/10.1038/20400

    Article  CAS  Google Scholar 

  40. Northen TR, Yanes O, Northen MT et al (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036. https://doi.org/10.1038/nature06195

    Article  CAS  Google Scholar 

  41. Feuerstein I, Najam-ul-Haq M, Rainer M et al (2006) Material-Enhanced Laser Desorption/Ionization (MELDI)-A New Protein Profiling Tool Utilizing Specific Carrier Materials for Time of Flight Mass Spectrometric Analysis. J Am Soc Mass Spectrom 17:1203–1208. https://doi.org/10.1016/j.jasms.2006.04.032

    Article  CAS  Google Scholar 

  42. Wen X, Dagan S, Wysocki VH (2007) Small-Molecule Analysis with Silicon-Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 79:434–444. https://doi.org/10.1021/ac061154l

    Article  CAS  Google Scholar 

  43. Kang M-J, Pyun J-C, Lee J-C et al (2005) Nanowire-assisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules. Rapid Commun Mass Spectrom 19:3166–3170. https://doi.org/10.1002/rcm.2187

    Article  CAS  Google Scholar 

  44. Lee CS, Kang KK, Kim JH et al (2007) Analysis of small molecules by desorption/ionization on mesoporous silicate (DIOM)-mass spectrometry (MS). Microporous Mesoporous Mater 98:200–207. https://doi.org/10.1016/j.micromeso.2006.09.005

    Article  CAS  Google Scholar 

  45. Sekuła J, Nizioł J, Rode W, Ruman T (2015) Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Anal Chim Acta 875:61–72. https://doi.org/10.1016/j.aca.2015.01.046

    Article  CAS  Google Scholar 

  46. Abdelhamid HN, Wu H-F (2014) Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. TrAC Trends Anal Chem 65:30–46

    Article  CAS  Google Scholar 

  47. Gholipour Y, Giudicessi SL, Nonami H, Erra-Balsells R (2010) Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Anal Chem 82:5518–5526. https://doi.org/10.1021/ac1003129

    Article  CAS  Google Scholar 

  48. Kawasaki H, Akira T, Watanabe T et al (2009) Sulfonate group-modified FePtCu nanoparticles as a selective probe for LDI-MS analysis of oligopeptides from a peptide mixture and human serum proteins. Anal Bioanal Chem 395:1423–1431. https://doi.org/10.1007/s00216-009-3122-0

    Article  CAS  Google Scholar 

  49. Castellana ET, Russell DH (2007) Tailoring nanoparticle surface chemistry to enhance laser desorption ionization of peptides and proteins. Nano Lett 7:3023–3025. https://doi.org/10.1021/nl071469w

    Article  CAS  Google Scholar 

  50. Huang YF, Chang HT (2007) Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal Chem 79:4852–4859. https://doi.org/10.1021/ac070023x

    Article  CAS  Google Scholar 

  51. Su CL, Tseng WL (2007) Gold nanoparticles as assisted matrix for determining neutral small carbohydrates through laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 79:1626–1633. https://doi.org/10.1021/ac061747w

    Article  CAS  Google Scholar 

  52. McLean JA, Stumpo KA, Russel DH (2005) Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J Am Chem Soc 127:5304–5305. https://doi.org/10.1021/ja043907w

    Article  CAS  Google Scholar 

  53. Pilolli R, Palmisano F, Cioffi N (2012) Gold nanomaterials as a new tool for bioanalytical applications of laser desorption ionization mass spectrometry. Anal Bioanal Chem 402:601–623. https://doi.org/10.1007/s00216-011-5120-2

    Article  CAS  Google Scholar 

  54. Silina YE, Fink-straube C, Hayen H, Volmer DA (2015) Analysis of fatty acids and triacylglycerides by Pd nanoparticle-assisted laser desorption/ionization mass spectrometry. Anal Methods 7:3701–3707. https://doi.org/10.1039/C5AY00705D

    Article  CAS  Google Scholar 

  55. Finkel NH, Prevo BG, Velev OD, He L (2005) Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry. Anal Chem 77:1088–1095. https://doi.org/10.1021/ac048645v

    Article  CAS  Google Scholar 

  56. Dupré M, Coffinier Y, Boukherroub R et al (2012) Laser desorption ionization mass spectrometry of protein tryptic digests on nanostructured silicon plates. J Proteome 75:1973–1990. https://doi.org/10.1016/j.jprot.2011.12.039

    Article  CAS  Google Scholar 

  57. Piret G, Drobecq H, Coffinier Y et al (2010) Matrix-free laser desorption/ionization mass spectrometry on silicon nanowire arrays prepared by chemical etching of crystalline silicon. Langmuir 26:1354–1361. https://doi.org/10.1021/la902266x

    Article  CAS  Google Scholar 

  58. Chen Y, Vertes A (2006) Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays. Anal Chem 78:5835–5844. https://doi.org/10.1021/ac060405n

    Article  CAS  Google Scholar 

  59. Go EP, Apon JV, Luo G et al (2005) Desorption/ionization on silicon nanowires. Anal Chem 77:1641–1646. https://doi.org/10.1021/ac048460o

    Article  CAS  Google Scholar 

  60. Shariatgorji M, Amini N, Ilag LL (2009) Silicon nitride nanoparticles for surface-assisted laser desorption/ionization of small molecules. J Nanopart Res 11:1509–1512. https://doi.org/10.1007/s11051-009-9601-6

    Article  CAS  Google Scholar 

  61. Najam-ul-Haq M, Rainer M, Huck CW et al (2008) Nanostructured Diamond-Like Carbon on Digital Versatile Disc as a Matrix-Free Target for Laser Desorption/Ionization Mass Spectrometry. Anal Chem 80:7467–7472. https://doi.org/10.1021/ac801190e

    Article  CAS  Google Scholar 

  62. Coffinier Y, Szunerits S, Drobecq H et al (2012) Diamond nanowires for highly sensitive matrix-free mass spectrometry analysis of small molecules. Nano 4:231–238. https://doi.org/10.1039/C1NR11274K

    CAS  Google Scholar 

  63. Seino T, Sato H, Yamamoto A et al (2007) Matrix-free laser desorption/ionization-mass spectrometry using self-assembled germanium nanodots. Anal Chem 79:4827–4832. https://doi.org/10.1021/ac062216a

    Article  CAS  Google Scholar 

  64. Xu S, Li Y, Zou H et al (2003) Carbon Nanotubes as Assisted Matrix for Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal Chem 75:6191–6195. https://doi.org/10.1021/ac0345695

    Article  CAS  Google Scholar 

  65. Hu L, Xu S, Pan C et al (2005) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a matrix of carbon nanotubes for the analysis of low-mass compounds in environmental samples. Environ Sci Technol 39:8442–8447. https://doi.org/10.1021/es0508572

    Article  CAS  Google Scholar 

  66. Kawasaki H, Yonezawa T, Watanabe T, Arakawa R (2007) Platinum nanoflowers for surface-assisted laser desorption/ionization mass spectrometry of biomolecules. J Phys Chem C 111:16278–16283. https://doi.org/10.1021/jp075159d

    Article  CAS  Google Scholar 

  67. Chiang CK, Yang Z, Lin YW et al (2010) Detection of proteins and protein-ligand complexes using hgte nanostructure matrixes in surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 82:4543–4550. https://doi.org/10.1021/ac100550c

    Article  CAS  Google Scholar 

  68. Kailasa SK, Kiran K, Wu HF (2008) Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 80:9681–9688. https://doi.org/10.1021/ac8015664

    Article  CAS  Google Scholar 

  69. Nayak R, Knapp DR (2007) Effects of Thin-Film Structural Parameters on Laser Desorption/Ionization from Porous Alumina. Anal Chem 79(13):4950–4956. https://doi.org/10.1021/ac062289u

    Article  CAS  Google Scholar 

  70. Niklew M-L, Hochkirch U, Melikyan A et al (2010) Phosphopeptide Screening Using Nanocrystalline Titanium Dioxide Films as Affinity Matrix-Assisted Laser Desorption Ionization Targets in Mass Spectrometry. Anal Chem 82:1047–1053. https://doi.org/10.1021/ac902403m

    Article  CAS  Google Scholar 

  71. Lee KH, Chiang CK, Lin ZH, Chang HT (2007) Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun Mass Spectrom 21:2023–2030. https://doi.org/10.1002/rcm.3058

    Article  CAS  Google Scholar 

  72. Taira S, Kitajima K, Katayanagi H et al (2009) Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications. Sci Technol Adv Mater 10:34602. https://doi.org/10.1088/1468-6996/10/3/034602

    Article  CAS  Google Scholar 

  73. Kailasa SK, Wu HF (2010) Multifunctional ZrO2 nanoparticles and ZrO2-SiO 2 nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins. Anal Bioanal Chem 396:1115–1125. https://doi.org/10.1007/s00216-009-3330-7

    Article  CAS  Google Scholar 

  74. Chen W-Y, Chen Y-C (2006) Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Anal Bioanal Chem 386:699–704. https://doi.org/10.1007/s00216-006-0427-0

    Article  CAS  Google Scholar 

  75. Chen CT, Chen YC (2005) Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 77:5912–5919. https://doi.org/10.1021/ac050831t

    Article  CAS  Google Scholar 

  76. Yonezawa T, Tsukamoto H, Hayashi S et al (2013) Suitability of GaP nanoparticles as a surface-assisted laser desorption/ionization mass spectroscopy inorganic matrix and their soft ionization ability. Analyst 138:995–999. https://doi.org/10.1039/c2an36738f

    Article  CAS  Google Scholar 

  77. Shi CY, Deng CH (2016) Recent advances in inorganic materials for LDI-MS analysis of small molecules. Analyst 141:2816–2826. https://doi.org/10.1039/C6AN00220J

    Article  CAS  Google Scholar 

  78. Kuzema PA (2011) Small-molecule analysis by surface-assisted laser desorption/ionization mass spectrometry. J Anal Chem 66:1227–1242. https://doi.org/10.1134/S1061934811130065

    Article  CAS  Google Scholar 

  79. Zhu Z-J, Rotello VM, Vachet RW (2009) Engineered nanoparticle surfaces for improved mass spectrometric analyses. Analyst 134:2183–2188. https://doi.org/10.1039/b910428c

    Article  CAS  Google Scholar 

  80. Arakawa R, Kawasaki H (2010) Functionalized Nanoparticles and Nanostructured Surfaces for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Sci 26:1229–1240. https://doi.org/10.2116/analsci.26.1229

    Article  CAS  Google Scholar 

  81. Zenobi R, Knochenmuss R (1998) Ion formation in MALDI mass spectrometry. Mass Spectrom Rev 17:337–366. https://doi.org/10.1002/(SICI)1098-2787(1998)17:5<337::AID-MAS2>3.0.CO;2-S

    Article  CAS  Google Scholar 

  82. Wu KJ, Odom RW (1998) Characterizing synthetic polymers by MALDI MS. Anal Chem 70:456A–461A. https://doi.org/10.1021/ac981910q

    Article  CAS  Google Scholar 

  83. Fenselau C (1997) MALDI MS and strategies for protein analysis. Anal Chem 69:661A–665A. https://doi.org/10.1021/ac971831z

    Article  CAS  Google Scholar 

  84. Karas M, Bahr U, Gießmann U (1991) Matrix assisted laser desorption ionization mass spectrometry. Mass Spectrom Rev 10:335–357. https://doi.org/10.1002/mas.1280100503

    Article  CAS  Google Scholar 

  85. Chen Y-C, Abdelhamid HN, Wu H-F (2017) Simple and Direct Quantitative Analysis for Quinidine Drug in Fish Tissues. Mass Spectrom Lett 8:8–13

    Article  Google Scholar 

  86. Sekar R, Kailasa SK, Abdelhamid HN et al (2013) Electrospray ionization tandem mass spectrometric studies of copper and iron complexes with tobramycin. Int J Mass Spectrom 338:23–29. https://doi.org/10.1016/j.ijms.2012.12.001

    Article  CAS  Google Scholar 

  87. Khan N, Abdelhamid HN, Yan J-Y et al (2015) Detection of flutamide in pharmaceutical dosage using higher electrospray ionization mass spectrometry (ESI-MS) tandem mass coupled with Soxhlet apparatus. Anal Chem Res. https://doi.org/10.1016/j.ancr.2015.01.001

  88. Abdelhamid HN, Wu H (2015) Soft Ionization of Metallo-Mefenamic Using Electrospray Ionization Mass Spectrometry. Mass Spectrom Lett 6:43–47. https://doi.org/10.5478/MSL.2015.6.2.43

    Article  CAS  Google Scholar 

  89. Hofstadler SA, Sannes-Lowery KA (2006) Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat Rev Drug Discov 5:585–595. https://doi.org/10.1038/nrd2083

    Article  CAS  Google Scholar 

  90. Abdelhamid HN, Gopal J, Wu HF (2013) Synthesis and application of ionic liquid matrices (ILMs) for effective pathogenic bacteria analysis in matrix assisted laser desorption/ionization (MALDI-MS). Anal Chim Acta 767:104–111

    Article  CAS  Google Scholar 

  91. Abdelhamid HN, Khan MS, Wu H-F (2014) Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: a novel strategy for pathogenic bacteria biosensing. Anal Chim Acta 823:51–60. https://doi.org/10.1016/j.aca.2014.03.026

    Article  CAS  Google Scholar 

  92. Abdelhamid HN (2016) Physicochemical Properties of Proteomic Ionic Liquids Matrices for MALDI-MS. J Data Min Genomics Proteomics 7:2153–0602.1000

    Google Scholar 

  93. Qiao L, Liu B, Girault HH (2010) Nanomaterial-assisted laser desorption ionization for mass spectrometry-based biomedical analysis. Nanomedicine (London) 5:1641–1652. https://doi.org/10.2217/nnm.10.127

    Article  CAS  Google Scholar 

  94. Kailasa SK, Wu H-F (2010) Surface modified silver selinide nanoparticles as extracting probes to improve peptide/protein detection via nanoparticles-based liquid phase microextraction coupled with MALDI mass spectrometry. Talanta 83:527–534. https://doi.org/10.1016/j.talanta.2010.09.040

    Article  CAS  Google Scholar 

  95. Kailasa SK, Wu HF (2015) Nanomaterial-based miniaturized extraction and preconcentration techniques coupled to matrix-assisted laser desorption/ionization mass spectrometry for assaying biomolecules. TrAC Trends Anal Chem 65:54–72. https://doi.org/10.1016/j.trac.2014.09.011

    Article  CAS  Google Scholar 

  96. Kailasa SK, Wu H-F (2014) Recent developments in nanoparticle-based MALDI mass spectrometric analysis of phosphoproteomes. Microchim Acta 181:853–864. https://doi.org/10.1007/s00604-014-1191-z

    Article  CAS  Google Scholar 

  97. Kailasa SK, Mehta VN, Wu H-F (2014) Recent developments of liquid-phase microextraction techniques directly combined with ESI- and MALDI-mass spectrometric techniques for organic and biomolecule assays. RSC Adv 4:16188–16205. https://doi.org/10.1039/c3ra47347c

    Article  CAS  Google Scholar 

  98. Abdelhamid HN, Wu H-F (2016) Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells. Anal Bioanal Chem 408:4485–4502. https://doi.org/10.1007/s00216-016-9374-6

    Article  CAS  Google Scholar 

  99. Unnikrishnan B, Chang C-Y, Chu H-W et al (2016) Functional Gold Nanoparticles Coupled with Laser Desorption Ionization Mass Spectrometry for Bioanalysis. Anal Methods 0:1–11. https://doi.org/10.1039/C6AY02378A

    CAS  Google Scholar 

  100. Yao G, Zhang H, Deng C et al (2009) Facile synthesis of 4-mercaptophenylboronic acid functionalized gold nanoparticles for selective enrichment of glycopeptides. Rapid Commun Mass Spectrom 23:3493–3500. https://doi.org/10.1002/rcm.4258

    Article  CAS  Google Scholar 

  101. Nayak R, Knapp DR (2010) Matrix-Free LDI Mass Spectrometry Platform Using Patterned Nanostructured Gold Thin Film. Anal Chem 82:7772–7778. https://doi.org/10.1021/ac1017277

    Article  CAS  Google Scholar 

  102. Lee J-W, Lee J-H, Oh H-S et al (2012) Selective Analysis of Thiol-Containing Molecules Using Nanoengineered Micro Gold Shells and LDI-TOF MS. Bull Kor Chem Soc 33:3076–3078. https://doi.org/10.5012/bkcs.2012.33.9.3076

    Article  CAS  Google Scholar 

  103. Wan D, Gao M, Wang Y et al (2013) A rapid and simple separation and direct detection of glutathione by gold nanoparticles and graphene-based MALDI-TOF-MS. J Sep Sci 36:629–635. https://doi.org/10.1002/jssc.201200766

    Article  CAS  Google Scholar 

  104. Son J, Lee G, Cha S (2014) Direct Analysis of Triacylglycerols from Crude Lipid Mixtures by Gold Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. J Am Soc Mass Spectrom 25:891–894. https://doi.org/10.1007/s13361-014-0844-9

    Article  CAS  Google Scholar 

  105. Cioffi N, De Palo F, Calvano CD et al (2008) Core–Shell Gold Nanoparticles as Non-Conventional Matrix for the MALDI-ToF-MS Detection of Amino Acids: A Preliminary Study. Sens Lett 6:654–661. https://doi.org/10.1166/sl.2008.454

    Article  CAS  Google Scholar 

  106. Pilolli R, Ditaranto N, Monopoli A et al (2014) Designing functionalized gold surfaces and nanostructures for Laser Desorption Ionisation Mass Spectrometry. Vacuum 100:78–83. https://doi.org/10.1016/j.vacuum.2013.07.032

    Article  CAS  Google Scholar 

  107. Bian J, Olesik SV, Powell DH et al (2017) Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers. Analyst 142:1125–1132. https://doi.org/10.1039/C6AN02444K

    Article  CAS  Google Scholar 

  108. Huang YF, Chang HT (2006) Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 78:1485–1493. https://doi.org/10.1021/ac0517646

    Article  CAS  Google Scholar 

  109. Abdelhamid HN, Wu H-F (2013) Polymer dots for quantifying the total hydrophobic pathogenic lysates in a single drop. Colloids Surf B: Biointerfaces 115C:51–60

    Google Scholar 

  110. Chau SL, Tang HW, Ng KM (2016) Gold nanoparticles bridging infra-red spectroscopy and laser desorption/ionization mass spectrometry for direct analysis of over-the-counter drug and botanical medicines. Anal Chim Acta 919:62–69. https://doi.org/10.1016/j.aca.2016.03.023

    Article  CAS  Google Scholar 

  111. Kailasa SK, Wu H-F (2012) One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. Analyst 137:1629. https://doi.org/10.1039/c2an16008k

    Article  CAS  Google Scholar 

  112. Chiang C-K, Lin Y-W, Chen W-T, Chang H-T (2010) Accurate quantitation of glutathione in cell lysates through surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles. Nanomedicine 6:530–537. https://doi.org/10.1016/j.nano.2010.01.006

    Article  CAS  Google Scholar 

  113. Creran B, Yan B, Moyano DF et al (2012) Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chem Commun 48:4543. https://doi.org/10.1039/c2cc30499f

    Article  CAS  Google Scholar 

  114. Tang H-W, Wong MY-M, Lam W et al (2011) Molecular histology analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry using gold nanoparticles as matrix. Rapid Commun Mass Spectrom 25:3690–3696. https://doi.org/10.1002/rcm.5281

    Article  CAS  Google Scholar 

  115. Tang H-W, Wong MY-M, Chan SL-F et al (2011) Molecular Imaging of Banknote and Questioned Document Using Solvent-Free Gold Nanoparticle-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. Anal Chem 83:453–458. https://doi.org/10.1021/ac1020485

    Article  CAS  Google Scholar 

  116. Liang Q, Macher T, Xu Y et al (2014) MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix. Anal Chem 86:8496–8503. https://doi.org/10.1021/ac502422a

    Article  CAS  Google Scholar 

  117. Amendola V, Litti L, Meneghetti M (2013) LDI-MS assisted by chemical-free gold nanoparticles: Enhanced sensitivity and reduced background in the low-mass region. Anal Chem 85:11747–11754. https://doi.org/10.1021/ac401662r

    Article  CAS  Google Scholar 

  118. Duan J, Linman MJ, Chen C-Y, Cheng QJ (2009) CHCA-modified Au nanoparticles for laser desorption ionization mass spectrometric analysis of peptides. J Am Soc Mass Spectrom 20:1530–1539. https://doi.org/10.1016/j.jasms.2009.04.009

    Article  CAS  Google Scholar 

  119. Kolářová L, Kučera L, Vaňhara P et al (2015) Use of flower-like gold nanoparticles in time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 29:1585–1595. https://doi.org/10.1002/rcm.7265

    Article  CAS  Google Scholar 

  120. Tarui A, Kawasaki H, Taiko T et al (2009) Gold-nanoparticle-supported silicon plate with polymer micelles for surface-assisted laser desorption/ionization mass spectrometry of peptides. J Nanosci Nanotechnol 9:159–164. https://doi.org/10.1166/jnn.2009.J046

    Article  CAS  Google Scholar 

  121. Yang M, Fujino T (2014) Gold nanoparticles loaded on zeolite as inorganic matrix for laser desorption/ionization mass spectrometry of small molecules. Chem Phys Lett 592:160–163. https://doi.org/10.1016/j.cplett.2013.12.027

    Article  CAS  Google Scholar 

  122. Marsico ALM, Duncan B, Landis RF et al (2017) Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules Using Gold Nanoparticles, Matrix, and the Coffee Ring Effect. Anal Chem 89:3009–3014. https://doi.org/10.1021/acs.analchem.6b04538

    Article  CAS  Google Scholar 

  123. Sekuła J, Nizioł J, Rode W et al (2015) Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging. Analyst 140:6195–6209. https://doi.org/10.1039/C5AN00943J

    Article  CAS  Google Scholar 

  124. Hua L, Chen J, Ge L, Tan SN (2007) Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides. J Nanopart Res 9:1133–1138. https://doi.org/10.1007/s11051-007-9244-4

    Article  CAS  Google Scholar 

  125. Hong S, Lee JS, Ryu J et al (2011) Bio-inspired strategy for on-surface synthesis of silver nanoparticles for metal/organic hybrid nanomaterials and LDI-MS substrates. Nanotechnology 22:494020. https://doi.org/10.1088/0957-4484/22/49/494020

    Article  CAS  Google Scholar 

  126. Shrivas K, Wu H-F (2008) Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in surface-assisted laser desorption/ionization time-of-flight and atmospheric pressure matrix-assisted laser desorption/ionization ion trap mas. Rapid Commun Mass Spectrom 22:2863–2872. https://doi.org/10.1002/rcm.3681

    Article  CAS  Google Scholar 

  127. Chiu TC, Chang LC, Chiang CK, Chang HT (2008) Determining Estrogens Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Silver Nanoparticles as the Matrix. J Am Soc Mass Spectrom 19:1343–1346. https://doi.org/10.1016/j.jasms.2008.06.006

    Article  CAS  Google Scholar 

  128. Wang M-T, Liu M-H, Wang CRC, Chang SY (2009) Silver-coated gold nanoparticles as concentrating probes and matrices for surface-assisted laser desorption/ionization mass spectrometric analysis of aminoglycosides. J Am Soc Mass Spectrom 20:1925–1932. https://doi.org/10.1016/j.jasms.2009.06.018

    Article  CAS  Google Scholar 

  129. Sherrod SD, Diaz AJ, Russell WK et al (2008) Silver nanoparticles as selective ionization probes for analysis of olefins by mass spectrometry. Anal Chem 80:6796–6799. https://doi.org/10.1021/ac800904g

    Article  CAS  Google Scholar 

  130. Castellana E, Sherrod S, Russell D (2008) Nanoparticles for Selective Laser Desorption/Ionization in Mass Spectrometry. J Assoc Lab Autom 13:330–334. https://doi.org/10.1016/j.jala.2008.08.002

    Article  CAS  Google Scholar 

  131. Muller L, Baldwin K, Barbacci DC et al (2017) Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles. J Am Soc Mass Spectrom 28:1716–1728. https://doi.org/10.1007/s13361-017-1665-4

    Article  CAS  Google Scholar 

  132. Sudhir P-R, Shrivas K, Zhou Z-C, Wu H-F (2008) Single drop microextraction using silver nanoparticles as electrostatic probes for peptide analysis in atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry and comparison with gold electrostatic probes and silver hydrophobic. Rapid Commun Mass Spectrom 22:3076–3086. https://doi.org/10.1002/rcm.3710

    Article  CAS  Google Scholar 

  133. Schnapp A, Niehoff A-C, Koch A, Dreisewerd K (2016) Laser desorption/ionization mass spectrometry of lipids using etched silver substrates. Methods 104:194–203. https://doi.org/10.1016/j.ymeth.2016.01.014

    Article  CAS  Google Scholar 

  134. Shastri L, Abdelhamid HN, Nawaz M, Wu H-F (2015) Synthesis, characterization and bifunctional applications of bidentate silver nanoparticle assisted single drop microextraction as a highly sensitive preconcentrating probe for protein analysis. RSC Adv 5:41595–41603. https://doi.org/10.1039/C5RA04032A

    Article  CAS  Google Scholar 

  135. Gamez RC, Castellana ET, Russell DH (2013) Sol-Gel-derived silver-nanoparticle-embedded thin film for mass spectrometry-based biosensing. Langmuir 29:6502–6507. https://doi.org/10.1021/la4008526

    Article  CAS  Google Scholar 

  136. Jackson SN, Baldwin K, Muller L et al (2014) Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles. Anal Bioanal Chem 406:1377–1386. https://doi.org/10.1007/s00216-013-7525-6

    Article  CAS  Google Scholar 

  137. Muller L, Kailas A, Jackson SN et al (2015) Lipid imaging within the normal rat kidney using silver nanoparticles by matrix-assisted laser desorption/ionization mass spectrometry. Kidney Int 88:186–192. https://doi.org/10.1038/ki.2015.3

    Article  CAS  Google Scholar 

  138. Hayasaka T, Goto-Inoue N, Zaima N et al (2010) Imaging mass spectrometry with silver nanoparticles reveals the distribution of fatty acids in mouse retinal sections. J Am Soc Mass Spectrom 21:1446–1454. https://doi.org/10.1016/j.jasms.2010.04.005

    Article  CAS  Google Scholar 

  139. Nizioł J, Ruman T (2013) Surface-transfer mass spectrometry imaging on a monoisotopic silver nanoparticle enhanced target. Anal Chem 85:12070–12076. https://doi.org/10.1021/ac4031658

    Article  CAS  Google Scholar 

  140. Picca RA, Calvano CD, Lo Faro MJ et al (2016) Functionalization of silicon nanowire arrays by silver nanoparticles for the laser desorption ionization mass spectrometry analysis of vegetable oils. J Mass Spectrom 51:849–856. https://doi.org/10.1002/jms.3826

    Article  CAS  Google Scholar 

  141. Yang M, Fujino T (2013) Silver nanoparticles on zeolite surface for laser desorption/ionization mass spectrometry of low molecular weight compounds. Chem Phys Lett 576:61–64. https://doi.org/10.1016/j.cplett.2013.05.030

    Article  CAS  Google Scholar 

  142. Hong M, Xu L, Wang F et al (2016) A direct assay of carboxyl-containing small molecules by SALDI-MS on a AgNP/rGO-based nanoporous hybrid film. Analyst 141:2712–2726. https://doi.org/10.1039/c5an02440d

    Article  CAS  Google Scholar 

  143. Zhao Y, Deng G, Liu X et al (2016) MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chim Acta 937:87–95. https://doi.org/10.1016/j.aca.2016.06.026

    Article  CAS  Google Scholar 

  144. Nizioł J, Rode W, Zieliński Z, Ruman T (2013) Matrix-free laser desorption-ionization with silver nanoparticle-enhanced steel targets. Int J Mass Spectrom 335:22–32. https://doi.org/10.1016/j.ijms.2012.10.009

    Article  CAS  Google Scholar 

  145. Yonezawa T, Kawasaki H, Tarui A et al (2009) Detailed Investigation on the Possibility of Nanoparticles of Various Metal Elements for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Sci 25:339–346. https://doi.org/10.2116/analsci.25.339

    Article  CAS  Google Scholar 

  146. Shrivas K, Agrawal K, Wu H-F (2011) Application of platinum nanoparticles as affinity probe and matrix for direct analysis of small biomolecules and microwave digested proteins using matrix-assisted laser desorption/ionization mass spectrometry. Analyst 136:2852. https://doi.org/10.1039/c1an15211d

    Article  CAS  Google Scholar 

  147. Kawasaki H, Ozawa T, Hisatomi H, Arakawa R (2012) Platinum vapor deposition surface-assisted laser desorption/ionization for imaging mass spectrometry of small molecules. Rapid Commun Mass Spectrom 26:1849–1858. https://doi.org/10.1002/rcm.6301

    Article  CAS  Google Scholar 

  148. Ozawa T, Osaka I, Ihozaki T et al (2015) Simultaneous detection of phosphatidylcholines and glycerolipids using matrix-enhanced surface-assisted laser desorption/ionization-mass spectrometry with sputter-deposited platinum film. J Mass Spectrom 50:1264–1269. https://doi.org/10.1002/jms.3700

    Article  CAS  Google Scholar 

  149. Yuan M, Shan Z, Tian B et al (2005) Preparation of highly ordered mesoporous WO3-TiO2 as matrix in matrix-assisted laser desorption/ionization mass spectrometry. Microporous Mesoporous Mater 78:37–41. https://doi.org/10.1016/j.micromeso.2004.09.014

    Article  CAS  Google Scholar 

  150. Abdelhamid HN, Lin YC, Wu H-F (2017) Magnetic nanoparticle modified chitosan for surface enhanced laser desorption/ionization mass spectrometry of surfactants. RSC Adv 7:41585–41592. https://doi.org/10.1039/C7RA05982E

    Article  CAS  Google Scholar 

  151. Chen CT, Chen YC (2004) Molecularly Imprinted TiO2-Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Selectively Detecting ??-Cyclodextrin. Anal Chem 76:1453–1457. https://doi.org/10.1021/ac034986h

    Article  CAS  Google Scholar 

  152. Kim J-I, Park J-M, Noh J-Y et al (2016) Analysis of benzylpenicillin in milk using MALDI-TOF mass spectrometry with top-down synthesized TiO2 nanowires as the solid matrix. Chemosphere 143:64–70. https://doi.org/10.1016/j.chemosphere.2015.04.002

    Article  CAS  Google Scholar 

  153. Abdelhamid HN, Bhaisare ML, Wu H-F (2014) Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis. Talanta 120:208–217. https://doi.org/10.1016/j.talanta.2013.11.078

    Article  CAS  Google Scholar 

  154. Chen CT, Chen YC (2004) Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun Mass Spectrom 18:1956–1964. https://doi.org/10.1002/rcm.1572

    Article  CAS  Google Scholar 

  155. Taira S, Taguchi H, Fukuda R et al (2014) Silver Oxide Based Nanoparticle Assisted Laser Desorption/Ionization Mass Spectrometry for the Detection of Low Molecular Weight Compounds. Mass Spectrom (Tokyo). https://doi.org/10.5702/massspectrometry.S0025

    Google Scholar 

  156. Abdelhamid HN, Talib A, Wu H-F (2015) Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv 5:34594–34602

    Article  CAS  Google Scholar 

  157. Abdelhamid HN, Wu H-F (2014) Facile synthesis of nano silver ferrite (AgFeO2) modified with chitosan applied for biothiol separation. Mater Sci Eng C Mater Biol Appl 45:438–445. https://doi.org/10.1016/j.msec.2014.08.071

    Article  CAS  Google Scholar 

  158. Abdelhamid HN, Talib A, Wu H-F (2015) Correction: Facile synthesis of water soluble silver ferrite (AgFeO 2 ) nanoparticles and their biological application as antibacterial agents. RSC Adv 5:39952–39953. https://doi.org/10.1039/C5RA90041G

    Article  CAS  Google Scholar 

  159. Abdelhamid HN, Kumaran S, Wu H-F (2016) One-pot synthesis of CuFeO2 nanoparticles capped with glycerol and proteomic analysis of their nanocytotoxicity against fungi. RSC Adv 6:97629–97635. https://doi.org/10.1039/C6RA13396G

    Article  CAS  Google Scholar 

  160. Watanabe T, Kawasaki H, Yonezawa T, Arakawa R (2008) Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J Mass Spectrom 43:1063–1071. https://doi.org/10.1002/jms.1385

    Article  CAS  Google Scholar 

  161. Gedda G, Abdelhamid HN, Khan MS, Wu H-F (2014) ZnO nanoparticle-modified polymethyl methacrylate-assisted dispersive liquid–liquid microextraction coupled with MALDI-MS for rapid pathogenic bacteria analysis. RSC Adv 4:45973–45983. https://doi.org/10.1039/C4RA03391D

    Article  CAS  Google Scholar 

  162. Kim Y-K, Wang L-S, Landis R et al (2017) A layer-by-layer assembled MoS 2 thin film as an efficient platform for laser desorption/ionization mass spectrometry analysis of small molecules. Nano 9:10854–10860. https://doi.org/10.1039/C7NR02949G

    CAS  Google Scholar 

  163. López De Laorden C, Beloqui A, Yate L et al (2015) Nanostructured indium tin oxide slides for small-molecule profiling and imaging mass spectrometry of metabolites by surface-assisted laser desorption ionization ms. Anal Chem 87:431–440. https://doi.org/10.1021/ac5025864

    Article  CAS  Google Scholar 

  164. Piret G, Kim D, Drobecq H et al (2012) Surface-assisted laser desorption-ionization mass spectrometry on titanium dioxide (TiO2) nanotube layers. Analyst 137:3058–3063. https://doi.org/10.1039/c2an35207a

    Article  CAS  Google Scholar 

  165. Shrivas K, Hayasaka T, Sugiura Y, Setou M (2011) Method for Simultaneous Imaging of Endogenous Low Molecular Weight Metabolites in Mouse Brain Using TiO 2 Nanoparticles in Nanoparticle-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry. Anal Chem 83:7283–7289. https://doi.org/10.1021/ac201602s

    Article  CAS  Google Scholar 

  166. Xu X, Deng C, Gao M et al (2006) Synthesis of Magnetic Microspheres with Immobilized Metal Ions for Enrichment and Direct Determination of Phosphopeptides by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Adv Mater 18:3289–3293. https://doi.org/10.1002/adma.200601546

    Article  CAS  Google Scholar 

  167. Komori H, Hashizaki R, Osaka I et al (2015) Nanoparticle-assisted laser desorption/ionization using sinapic acid-modified iron oxide nanoparticles for mass spectrometry analysis. Analyst 140:8134–8137. https://doi.org/10.1039/C5AN02081F

    Article  CAS  Google Scholar 

  168. Abdelhamid HN, Lin YC, Wu HF (2017) Thymine chitosan nanomagnets for specific preconcentration of mercury (II) prior to analysis using SELDI-MS. Microchim Acta 184:1517–1527. https://doi.org/10.1007/s00604-017-2083-9

    Article  CAS  Google Scholar 

  169. Obena RP, Lin PC, Lu YW et al (2011) Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 83:9337–9343. https://doi.org/10.1021/ac2017184

    Article  CAS  Google Scholar 

  170. Tseng M-C, Obena R, Lu Y-W et al (2010) Dihydrobenzoic Acid Modified Nanoparticle as a MALDI-TOF MS Matrix for Soft Ionization and Structure Determination of Small Molecules with Diverse Structures. J Am Soc Mass Spectrom 21:1930–1939. https://doi.org/10.1016/j.jasms.2010.08.001

    CAS  Google Scholar 

  171. Taira S, Sahashi Y, Shimma S et al (2011) Nanotrap and mass analysis of aromatic molecules by phenyl group-modified nanoparticle. Anal Chem 83:1370–1374. https://doi.org/10.1021/ac102741g

    Article  CAS  Google Scholar 

  172. Moritake S, Taira S, Sugiura Y et al (2009) Magnetic nanoparticle-based mass spectrometry for the detection of biomolecules in cultured cells. J Nanosci Nanotechnol 9:169–176. https://doi.org/10.1166/jnn.2009.J012

    Article  CAS  Google Scholar 

  173. Obena RP, Tseng M-C, Primadona I et al (2015) UV-activated multilayer nanomatrix provides one-step tunable carbohydrate structural characterization in MALDI-MS. Chem Sci 6:4790–4800. https://doi.org/10.1039/C5SC00546A

    Article  CAS  Google Scholar 

  174. Gopal J, Abdelhamid HN, Hua P-Y, Wu H-F (2013) Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine. J Mater Chem B 1:2463. https://doi.org/10.1039/c3tb20079e

    Article  CAS  Google Scholar 

  175. Abdelhamid HN, Wu B-S, Wu H-F (2014) Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: A novel approach for environmental and biomolecule analysis. Talanta 126:27–37

    Article  CAS  Google Scholar 

  176. Bhaisare ML, Abdelhamid HN, Wu B-S, Wu H-F (2014) Rapid and direct MALDI-MS identification of pathogenic bacteria from blood using ionic liquid-modified magnetic nanoparticles (Fe3O4@SiO2). J Mater Chem B 2:4671–4683. https://doi.org/10.1039/C4TB00528G

    Article  CAS  Google Scholar 

  177. Cuiffi JD, Hayes DJ, Fonash SJ et al (2001) Desorption-ionization mass spectrometry using deposited nanostructured silicon films. Anal Chem 73:1292–1295. https://doi.org/10.1021/ac001081k

    Article  CAS  Google Scholar 

  178. Alimpiev S, Grechnikov A, Sunner J et al (2008) On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon. J Chem Phys 128:14711. https://doi.org/10.1063/1.2802304

    Article  CAS  Google Scholar 

  179. Sunner J, Dratz E, Chen YC (1995) Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal Chem 67:4335–4342. https://doi.org/10.1021/ac00119a021

    Article  CAS  Google Scholar 

  180. Dong X, Cheng J, Li J, Wang Y (2010) Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal Chem 82:6208–6214. https://doi.org/10.1021/ac101022m

    Article  CAS  Google Scholar 

  181. Tang LAL, Wang J, Loh KP (2010) Graphene-based SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. J Am Chem Soc 132:10976–10977. https://doi.org/10.1021/ja104017y

    Article  CAS  Google Scholar 

  182. Zhou X, Wei Y, He Q et al (2010) Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem Commun (Camb) 46:6974–6976. https://doi.org/10.1039/c0cc01681k

    Article  CAS  Google Scholar 

  183. Zhang J, Dong X, Cheng J et al (2011) Efficient analysis of non-polar environmental contaminants by MALDI-TOF MS with graphene as matrix. J Am Soc Mass Spectrom 22:1294–1298. https://doi.org/10.1007/s13361-011-0143-7

    Article  CAS  Google Scholar 

  184. Liu Y, Liu J, Yin P et al (2011) High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. J Mass Spectrom 46:804–815. https://doi.org/10.1002/jms.1952

    Article  CAS  Google Scholar 

  185. Abdelhamid HN, Wu H-F (2013) Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. J Mater Chem B 1:3950–3961. https://doi.org/10.1039/c3tb20413h

    Article  CAS  Google Scholar 

  186. Abdelhamid HN, Wu H-F (2012) A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors. Anal Chim Acta 751:94–104. https://doi.org/10.1016/j.aca.2012.09.012

    Article  CAS  Google Scholar 

  187. Shahnawaz Khan M, Abdelhamid HN, Wu H-F (2015) Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf B: Biointerfaces 127C:281–291. https://doi.org/10.1016/j.colsurfb.2014.12.049

    Article  CAS  Google Scholar 

  188. Wu B-S, Abdelhamid HN, Wu H-F (2014) Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Adv 4:3722. https://doi.org/10.1039/c3ra43992e

    CAS  Google Scholar 

  189. Abdelhamid HN, Wu H-F (2014) Ultrasensitive, Rapid, and Selective Detection of Mercury Using Graphene Assisted Laser Desorption/Ionization Mass Spectrometry. J Am Soc Mass Spectrom 25:861–868. https://doi.org/10.1007/s13361-014-0825-z

    Article  CAS  Google Scholar 

  190. Abdelhamid HN, Khan MS, Wu H-F (2014) Graphene oxide as a nanocarrier for gramicidin (GOGD) for high antibacterial performance. RSC Adv 4:50035–50046. https://doi.org/10.1039/C4RA07250B

    Article  CAS  Google Scholar 

  191. Abdelhamid HN, Wu H-F (2015) Synthesis of a highly dispersive sinapinic acid@graphene oxide (SA@GO) and its applications as a novel surface assisted laser desorption/ionization mass spectrometry for proteomics and pathogenic bacteria biosensing. Analyst 140:1555–1565. https://doi.org/10.1039/c4an02158d

    Article  CAS  Google Scholar 

  192. Hua P-Y, Manikandan M, Abdelhamid HN, Wu H-F (2014) Graphene nanoflakes as an efficient ionizing matrix for MALDI-MS based lipidomics of cancer cells and cancer stem cells. J Mater Chem B 2:7334–7343

    Article  CAS  Google Scholar 

  193. Liu C-W, Chien M-W, Su C-Y et al (2012) Analysis of flavonoids by graphene-based surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 137:5809. https://doi.org/10.1039/c2an36155h

    Article  CAS  Google Scholar 

  194. Lu M, Lai Y, Chen G, Cai Z (2011) Laser desorption/ionization on the layer of graphene nanoparticles coupled with mass spectrometry for characterization of polymers. Chem Commun 47:12807. https://doi.org/10.1039/c1cc15592j

    Article  CAS  Google Scholar 

  195. Abdelhamid HN, Talib A, Wu HF (2017) One pot synthesis of gold – carbon dots nanocomposite and its application for cytosensing of metals for cancer cells. Talanta 166:357–363. https://doi.org/10.1016/j.talanta.2016.11.030

    Article  CAS  Google Scholar 

  196. Min Q, Zhang X, Chen X et al (2014) N-doped graphene: an alternative carbon-based matrix for highly efficient detection of small molecules by negative ion MALDI-TOF MS. Anal Chem 86:9122–9130. https://doi.org/10.1021/ac501943n

    Article  CAS  Google Scholar 

  197. Lu W, Li Y, Li R et al (2016) Facile Synthesis of N-Doped Carbon Dots as a New Matrix for Detection of Hydroxy-Polycyclic Aromatic Hydrocarbons by Negative-Ion Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ACS Appl Mater Interfaces 8:12976–12984. https://doi.org/10.1021/acsami.6b01510

    Article  CAS  Google Scholar 

  198. Lin Z, Zheng J, Lin G et al (2015) Negative Ion Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Small Molecules Using Graphitic Carbon Nitride Nanosheet Matrix. Anal Chem 87:8005–8012. https://doi.org/10.1021/acs.analchem.5b02066

    Article  CAS  Google Scholar 

  199. Huang X, Liu Q, Fu J et al (2016) Screening of Toxic Chemicals in a Single Drop of Human Whole Blood Using Ordered Mesoporous Carbon as a Mass Spectrometry Probe. Anal Chem 88:4107–4113. https://doi.org/10.1021/acs.analchem.6b00444

    Article  CAS  Google Scholar 

  200. Wang J, Liu Q, Liang Y, Jiang G (2016) Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal Bioanal Chem 408:2861–2873. https://doi.org/10.1007/s00216-015-9255-4

    Article  CAS  Google Scholar 

  201. Abdelhamid HN, Wu H-F (2013) Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J Mater Chem B 1:6094–6106. https://doi.org/10.1039/c3tb21020k

    Article  CAS  Google Scholar 

  202. Abdelhamid HN, Wu H-F (2014) Monitoring metallofulfenamic–bovine serum albumin interactions: a novel method for metallodrug analysis. RSC Adv 4:53768–53776. https://doi.org/10.1039/C4RA07638A

    Article  CAS  Google Scholar 

  203. Chen Z-Y, Abdelhamid HN, Wu H-F (2016) Effect of surface capping of quantum dots (CdTe) on proteomics. Rapid Commun Mass Spectrom 30:1403–1412. https://doi.org/10.1002/rcm.7575

    Article  CAS  Google Scholar 

  204. Ke Y, Kailasa SK, Wu H-F, Chen Z-Y (2010) High resolution detection of high mass proteins up to 80,000 Da via multifunctional CdS quantum dots in laser desorption/ionization mass spectrometry. Talanta 83:178–184. https://doi.org/10.1016/j.talanta.2010.09.003

    Article  CAS  Google Scholar 

  205. Shrivas K, Kailasa SK, Wu HF (2009) Quantum dots laser desorption/ionization MS: Multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics 9:2656–2667. https://doi.org/10.1002/pmic.200800772

    Article  CAS  Google Scholar 

  206. Abdelhamid HN, Wu H-F (2015) Synthesis and characterization of quantum dots for application in laser soft desorption/ionization mass spectrometry to detect labile metal–drug interactions and their antibacterial activity. RSC Adv 5:76107–76115. https://doi.org/10.1039/C5RA11301F

    Article  CAS  Google Scholar 

  207. Bibi A, Ju H (2016) Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis. J Mass Spectrom 51:291–297. https://doi.org/10.1002/jms.3753

    Article  CAS  Google Scholar 

  208. Nasser Abdelhamid H, Wu HF (2013) Furoic and mefenamic acids as new matrices for matrix assisted laser desorption/ionization-(MALDI)-mass spectrometry. Talanta 115:442–450. https://doi.org/10.1016/j.talanta.2013.05.050

    Article  CAS  Google Scholar 

  209. Liu C-W, Chien M-W, Chen G-F et al (2011) Quantum Dot Enhancement of Peptide Detection by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 83:6593–6600. https://doi.org/10.1021/ac201016c

    Article  CAS  Google Scholar 

  210. Abdelhamid HN, Chen Z-Y, Wu H-F (2017) Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots. Anal Bioanal Chem 409:4943–4950. https://doi.org/10.1007/s00216-017-0433-4

    Article  CAS  Google Scholar 

  211. Abdelhamid HN (2017) Lanthanide Metal-Organic Frameworks and Hierarchical Porous Zeolitic Imidazolate Frameworks: Synthesis, Properties, and Applications. PhD dissertation, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-146398

  212. Zou X, Yao Q, Gómez AB et al (2016) A series of highly stable isoreticular lanthanide metal-organic frameworks with tunable luminescence properties solved by rotation electron diffraction and X-ray diffraction. Acta Crystallogr Sect A Found Adv 72:s136–s136. https://doi.org/10.1107/S2053273316097977

    Article  Google Scholar 

  213. Han G, Zeng Q, Jiang Z et al (2017) MIL-101(Cr) as matrix for sensitive detection of quercetin by matrix-assisted laser desorption/ionization mass spectrometry. Talanta 164:355–361. https://doi.org/10.1016/j.talanta.2016.11.044

    Article  CAS  Google Scholar 

  214. Shih Y-H, Chien C-H, Singco B et al (2013) Metal–organic frameworks: new matrices for surface-assisted laser desorption–ionization mass spectrometry. Chem Commun 49:4929–4930. https://doi.org/10.1039/c3cc40934a

    Article  CAS  Google Scholar 

  215. Wang Y, Wang J, Gao M, Zhang X (2017) Functional dual hydrophilic dendrimer-modified metal-organic framework for the selective enrichment of N-glycopeptides. Proteomics 17:1700005. https://doi.org/10.1002/pmic.201700005

    Article  CAS  Google Scholar 

  216. Wei JP, Wang H, Luo T et al (2017) Enrichment of serum biomarkers by magnetic metal-organic framework composites. Anal Bioanal Chem 409:1895–1904. https://doi.org/10.1007/s00216-016-0136-2

    Article  CAS  Google Scholar 

  217. Chen L, Ou J, Wang H et al (2016) Tailor-Made Stable Zr(IV)-Based Metal-Organic Frameworks for Laser Desorption/Ionization Mass Spectrometry Analysis of Small Molecules and Simultaneous Enrichment of Phosphopeptides. ACS Appl Mater Interfaces 8:20292–20300. https://doi.org/10.1021/acsami.6b06225

    Article  CAS  Google Scholar 

  218. Lin Z, Bian W, Zheng J, Cai Z (2015) Magnetic metal–organic framework nanocomposites for enrichment and direct detection of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Chem Commun 51:8785–8788. https://doi.org/10.1039/C5CC02495A

    Article  CAS  Google Scholar 

  219. Liu H-L, Chang Y-J, Fan T, Gu Z-Y (2016) Two-dimensional metal–organic framework nanosheets as a matrix for laser desorption/ionization of small molecules and monitoring enzymatic reactions at high salt concentrations. Chem Commun 52:12984–12987. https://doi.org/10.1039/C6CC07371A

    Article  CAS  Google Scholar 

  220. Zhang W, Yan Z, Gao J et al (2015) Metal-organic framework UiO-66 modified magnetite@silica core-shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples. J Chromatogr A 1400:10–18. https://doi.org/10.1016/j.chroma.2015.04.061

    Article  CAS  Google Scholar 

  221. Xie Y, Deng C, Li Y (2017) Designed synthesis of ultra-hydrophilic sulfo-functionalized metal-organic frameworks with a magnetic core for highly efficient enrichment of the N-linked glycopeptides. J Chromatogr A 1508:1–6. https://doi.org/10.1016/j.chroma.2017.05.055

    Article  CAS  Google Scholar 

  222. Fu C-P, Lirio S, Liu W-L et al (2015) A novel type of matrix for surface-assisted laser desorption–ionization mass spectrometric detection of biomolecules using metal-organic frameworks. Anal Chim Acta 888:103–109. https://doi.org/10.1016/j.aca.2015.07.029

    Article  CAS  Google Scholar 

  223. Zhang Y-W, Li Z, Zhao Q et al (2014) A facilely synthesized amino-functionalized metal–organic framework for highly specific and efficient enrichment of glycopeptides. Chem Commun 50:11504–11506. https://doi.org/10.1039/C4CC05179C

    Article  CAS  Google Scholar 

  224. Yang X, Lin Z, Yan X, Cai Z (2016) Zeolitic imidazolate framework nanocrystals for enrichment and direct detection of environmental pollutants by negative ion surface-assisted laser desorption/ionization time-of-flight mass spectrometry. RSC Adv 6:23790–23793. https://doi.org/10.1039/C6RA00877A

    Article  CAS  Google Scholar 

  225. Zhai R, Yuan Y, Jiao F et al (2017) Facile synthesis of magnetic metal organic framework for highly efficient proteolytic digestion used in mass spectrometry-based proteomics. Anal Chim Acta. https://doi.org/10.1016/j.aca.2017.08.048

  226. Chiang N-C, Chiang C-K, Lin Z-H et al (2009) Detection of aminothiols through surface-assisted laser desorption/ionization mass spectrometry using mixed gold nanoparticles. Rapid Commun Mass Spectrom 23:3063–3068. https://doi.org/10.1002/rcm.4221

    Article  CAS  Google Scholar 

  227. Kurita M, Arakawa R, Kawasaki H (2016) Silver nanoparticle functionalized glass fibers for combined surface-enhanced Raman scattering spectroscopy (SERS)/surface-assisted laser desorption/ionization (SALDI) mass spectrometry via plasmonic/thermal hot spots. Analyst 111:3669–3712. https://doi.org/10.1039/C6AN00511J

    Google Scholar 

  228. Nie B, Masyuko RN, Bohn PW (2012) Correlation of surface-enhanced Raman spectroscopy and laser desorption-ionization mass spectrometry acquired from silver nanoparticle substrates. Analyst 137:1421–1427. https://doi.org/10.1039/c2an15790j

    Article  CAS  Google Scholar 

  229. Svatoš A (2010) Mass spectrometric imaging of small molecules. Trends Biotechnol 28:425–434. https://doi.org/10.1016/j.tibtech.2010.05.005

    Article  CAS  Google Scholar 

  230. Walton BL, Verbeck GF (2014) Soft-landing ion mobility of silver clusters for small-molecule matrix-assisted laser desorption ionization mass spectrometry and imaging of latent fingerprints. Anal Chem 86:8114–8120. https://doi.org/10.1021/ac5010822

    Article  CAS  Google Scholar 

  231. Anna Picca R, Damiana Calvano C, Cioffi N, Palmisano F (2017) Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review. Nano 7:75. https://doi.org/10.3390/nano7040075

    Google Scholar 

  232. Chiang C-K, Chen W-T, Chang H-T (2011) Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev 40:1269–1281. https://doi.org/10.1039/C0CS00050G

    Article  CAS  Google Scholar 

  233. Xu L, Qi X, Li X et al (2016) Recent advances in applications of nanomaterials for sample preparation. Talanta 146:714–726. https://doi.org/10.1016/j.talanta.2015.06.036

    Article  CAS  Google Scholar 

  234. Liu J, Liu Y, Gao M, Zhang X (2012) High throughput detection of tetracycline residues in milk using graphene or graphene oxide as MALDI-TOF MS matrix. J Am Soc Mass Spectrom 23:1424–1427. https://doi.org/10.1007/s13361-012-0400-4

    Article  CAS  Google Scholar 

  235. Teng F, Zhu Q, Wang Y et al (2018) Enhancing reproducibility of SALDI MS detection by concentrating analytes within laser spot. Talanta 179:583–587. https://doi.org/10.1016/j.talanta.2017.11.056

    Article  CAS  Google Scholar 

  236. Lu M, Lai Y, Chen G, Cai Z (2011) Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal Chem 83:3161–3169. https://doi.org/10.1021/ac2002559

    Article  CAS  Google Scholar 

  237. Kim Y-K, Na H-K, Kwack S-J et al (2011) Synergistic Effect of Graphene Oxide/MWCNT Films in Laser Desorption/Ionization Mass Spectrometry of Small Molecules and Tissue Imaging. ACS Nano 5:4550–4561. https://doi.org/10.1021/nn200245v

    Article  CAS  Google Scholar 

  238. Kim Y-K, Min D-H (2015) The Structural Influence of Graphene Oxide on Its Fragmentation during Laser Desorption/Ionization Mass Spectrometry for Efficient Small-Molecule Analysis. Chem Eur J 21:7217–7223. https://doi.org/10.1002/chem.201404067

    Article  CAS  Google Scholar 

  239. Kim Y-K, Min D-H (2014) Mechanistic Study of Laser Desorption/Ionization of Small Molecules on Graphene Oxide Multilayer Films. Langmuir 30:12675–12683. https://doi.org/10.1021/la5027653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Ministry of Higher Education and Scientific Research (MHESR), and Assuit university for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Nasser Abdelhamid.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhamid, H.N. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim Acta 185, 200 (2018). https://doi.org/10.1007/s00604-018-2687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2687-8

Keywords

Navigation