, Volume 28, Issue 3, pp 315–328 | Cite as

Ecological responses to forest age, habitat, and host vary by mycorrhizal type in boreal peatlands

  • Peter G. Kennedy
  • Louis A. Mielke
  • Nhu H. Nguyen
Original Article


Despite covering vast areas of boreal North America, the ecological factors structuring mycorrhizal fungal communities in peatland forests are relatively poorly understood. To assess how these communities vary by age (younger vs. mature), habitat (fen vs. bog), and host (conifer trees vs. ericaceous shrub), we sampled the roots of two canopy trees (Larix laricina and Picea mariana) and an ericaceous shrub (Ledum groenlandicum) at four sites in northern Minnesota, USA. To characterize the specific influence of host co-occurrence on mycorrhizal fungal community structure, we also conducted a greenhouse bioassay using the same three hosts. Root samples were assessed using Illumina-based high-throughput sequencing (HTS) of the ITS1 rRNA gene region. As expected, we found that the relative abundance of ectomycorrhizal fungi was high on both Larix and Picea, whereas ericoid mycorrhizal fungi had high relative abundance only on Ledum. Ericoid mycorrhizal fungal richness was significantly higher in mature forests, in bogs, and on Ledum hosts, while ectomycorrhizal fungal richness did not differ significantly across any of these three variables. In terms of community composition, ericoid mycorrhizal fungi were more strongly influenced by host while ectomycorrhizal fungi were more influenced by habitat. In the greenhouse bioassay, the presence of Ledum had consistently stronger effects on the composition of ectomycorrhizal, ericoid, and ericoid-ectomycorrhizal fungal communities than either Larix or Picea. Collectively, these results suggest that partitioning HTS-based datasets by mycorrhizal type in boreal peatland forests is important, as their responses to rapidly changing environmental conditions are not likely to be uniform.


Mycorrhizal fungi Bog Fen Larix laricina Picea mariana Ledum groenlandicum SPRUCE 



The authors thank Randy Kolka and Steve Sebestyen for assistance with field sampling and logistics at the Marcell Experimental Forest and J. Huggins and Y. Han for assistance with seedling sourcing, root sample processing, and DNA extractions. The manuscript was improved by constructive comments from members of the Kennedy lab as well as two anonymous reviewers.

Supplementary material

572_2018_821_MOESM1_ESM.pdf (3.1 mb)
Fig. S1 (PDF 3204 kb)
572_2018_821_MOESM2_ESM.pdf (18.5 mb)
Fig. S2 (PDF 18920 kb)
572_2018_821_MOESM3_ESM.pdf (11 kb)
Fig. S3 (PDF 11 kb)
572_2018_821_MOESM4_ESM.pdf (6 kb)
Fig. S4 (PDF 6 kb)
572_2018_821_MOESM5_ESM.pdf (6 kb)
Fig. S5 (PDF 6 kb)
572_2018_821_MOESM6_ESM.pdf (239 kb)
Table S1 (PDF 238 kb)
572_2018_821_MOESM7_ESM.pdf (88 kb)
Table S2 (PDF 87 kb)
572_2018_821_MOESM8_ESM.pdf (40 kb)
Table S3 (PDF 39 kb)
572_2018_821_MOESM9_ESM.pdf (25 kb)
Table S4 (PDF 24 kb)
572_2018_821_MOESM10_ESM.pdf (26 kb)
Table S5 (PDF 26 kb)
572_2018_821_MOESM11_ESM.pdf (94 kb)
Table S6 (PDF 93 kb)


  1. Asemaninejad A, Thorn RG, Lindo Z (2017) Vertical distribution of fungi in hummocks and hollows of boreal peatlands. Fungal Ecol 27:59–68. CrossRefGoogle Scholar
  2. Bogar LM, Kennedy PG (2013) New wrinkles in an old paradigm: neighborhood effects can modify the structure and specificity of Alnus-associated ectomycorrhizal fungal communities. FEMS Microbiol Ecol 83(3):767–777. CrossRefPubMedGoogle Scholar
  3. Clemmensen KE, Michelsen A, Jonasson S, Shaver GR (2006) Increased ectomycorrhizal fungal abundance after long‐term fertilization and warming of two arctic tundra ecosystems. New Phytol 171:391–404Google Scholar
  4. Collier LCS, Mallik AU (2010) Does post-fire abiotic habitat filtering create divergent plant communities in black spruce forests of eastern Canada? Oecologia 164(2):465–477. CrossRefPubMedGoogle Scholar
  5. Cullings KW, Vogler DR, Parker VT, Finley SK (2000) Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Appl Environ Microbiol 66(11):4988–4991. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Deslippe JR, Hartmann M, Mohn WW, Simard SW (2011) Long-term experimental manipulation of climate alters the ectomycorrhizal community of Betula nana in Artic tundra. Glob Chang Biol 17(4):1625–1636. CrossRefGoogle Scholar
  7. Dickie IA, Martinez-Garcia LB, Koele N et al (2013) Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367(1-2):11–39. CrossRefGoogle Scholar
  8. Dighton J, Coleman DC (1992) Phosphorus relations of roots and mycorrhizas of Rhododendron maximum L. in the southern Appalachians, North Carolina. Mycorrhiza 1:175–184CrossRefGoogle Scholar
  9. Duddridge JA (1986) The development and ultrastructure of ectomycorrhizas. IV. Compatible and incompatible interactions between Suillus grevillei (Klotzcsh) Sing. and a number of ectomycorrhizal hosts in vitro in the presence of exogenous carbohydrate. New Phytol 103(3):465–471. CrossRefGoogle Scholar
  10. Fernandez CW, Kennedy PG (2016) Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils ? New Phytol 209(4):1382–1394. CrossRefPubMedGoogle Scholar
  11. Fernandez CW, Nguyen NH, Stefanski A, Han Y, Hobbie SE, Montgomery RA, Reich PB, Kennedy PG (2017) Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob Chang Biol 23(4):1598–1609. CrossRefPubMedGoogle Scholar
  12. Glaser P (1987) The ecology of patterned boreal peatlands of northern Minneosta: a community profile. U.S. Fish Wildl Serv report 85-7. 98 ppGoogle Scholar
  13. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1(2):182–195. CrossRefPubMedGoogle Scholar
  14. Hanson P, Riggs JS, Nettles WR et al (2012) Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences 14:861–883CrossRefGoogle Scholar
  15. Hanson PJ, Riggs JS, Nettles WR, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, Warren JM (2017) Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO 2 atmosphere. Biogeosciences 14:861–883Google Scholar
  16. Heinselsman ML (1970) Landscape evolution, peatland types, and the environment in the Lake Agassiz peatlands natural area, Minnesota. Ecol Monogr 40(2):235–261. CrossRefGoogle Scholar
  17. Hiiesalu I, Bahram M, Tdersoo L (2017) Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol Ecol 26(18):4846–4858. CrossRefPubMedGoogle Scholar
  18. Hogberg P, Plamboeck AH, Taylor AFS, Fransson PMA (1999) Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. PNAS 96(15):8534–8539. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139(2):331–339. CrossRefGoogle Scholar
  20. Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot Can Bot 77:93–102CrossRefGoogle Scholar
  21. Horton TR, Molina RJ, Hood K (2005) Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15(6):393–403. CrossRefPubMedGoogle Scholar
  22. Johnstone JF, Chapin FS (2006) Effects of soil burn severity on post-fire tree recruitment in boreal forest. Ecosystems 9(1):14–31. CrossRefGoogle Scholar
  23. Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91(6):1071–1080. CrossRefGoogle Scholar
  24. Kennedy PG, Smith DP, Horton TR, Molina RJ (2012) Arbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivity. Am J Bot 99:1691–701Google Scholar
  25. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22(21):5271–5277. CrossRefPubMedGoogle Scholar
  26. Kolka R, Sebesyten S, Verry ES et al (2011) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca RatonGoogle Scholar
  27. Leopold DR (2016) Ericoid fungal diversity: challenges and opportunities for mycorrhizal research. Fungal Ecol 24:114–123. CrossRefGoogle Scholar
  28. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytol 199(1):288–299. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lorberau KE, Botnen SS, Mundra S, Aas AB, Rozema J, Eidesen PB, Kauserud H (2017) Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)? Mycorrhiza 27(5):513–524. CrossRefPubMedGoogle Scholar
  30. Mallik AU (2003) Conifer regeneration problems in boreal and temperate forests with ericaceous understory: role of disturbance, seedbed limitation, and keytsone species change. Crit Rev Plant Sci 22(3-4):341–366. CrossRefGoogle Scholar
  31. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12CrossRefGoogle Scholar
  32. Mohan JE, Cowden CC, Baas P, Dawadi A, Frankson PT, Helmick K, Hughes E, Khan S, Lang A, Machmuller M, Taylor M, Witt CA (2014) Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol 10:3–19. CrossRefGoogle Scholar
  33. Molina R, Trappe JM (1982) Lack of mycorrhizal specificity by the ericaceous hosts Arbutus menziesii and arctostaphylos uva-ursi. New Phytol 90(3):495–509. CrossRefGoogle Scholar
  34. Nguyen N, Song Z, Bates S et al (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. CrossRefGoogle Scholar
  35. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens HH, Szoecs E, Wagner H (2017) vegan: Community Ecology Package. R package version 2.4-4. Available from Accessed 5 Aug 2017
  36. Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14(7):434–447. CrossRefPubMedGoogle Scholar
  37. R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from Accessed 1 Aug 2017
  38. Read DJ (1991) Mycorrhizas in ecosystems. Exp Dermatol 47:376–391Google Scholar
  39. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157(3):475–492. CrossRefGoogle Scholar
  40. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes 82:1243–1263Google Scholar
  41. Reich PB, Sendall KM, Rice K, Rich RL, Stefanski A, Hobbie SE, Montgomery RA (2015) Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat Clim Chang 5(2):148–152. CrossRefGoogle Scholar
  42. Serreze MC, Walsh JE, Chapin FS III et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Chang 46(1/2):159–207. CrossRefGoogle Scholar
  43. Smith DP, Peay KG (2014) Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS One 9(2):e90234. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Smith JE, Molina R, Perry DA (1995) Occurrence of ectoraycorrhizas on ericaceous and coniferous seedlings grown in soils from the Oregon coast range. New Phytol 129(1):73–81. CrossRefGoogle Scholar
  45. Sun H, Terhonen E, Kovalchuk A, Tuovila H, Chen H, Oghenekaro AO, Heinonsalo J, Kohler A, Kasanen R, Vasander H, Asiegbu FO (2016) Dominant tree species and soil type affect the fungal community structure in a boreal peatland forest. Appl Environ Microbiol 82(9):2632–2643. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Suz LM, Barsoum N, Benham S, Dietrich HP, Fetzer KD, Fischer R, García P, Gehrman J, Kristöfel F, Manninger M, Neagu S, Nicolas M, Oldenburger J, Raspe S, Sánchez G, Schröck HW, Schubert A, Verheyen K, Verstraeten A, Bidartondo MI (2014) Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Mol Ecol 23(22):5628–5644. CrossRefPubMedGoogle Scholar
  47. Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (2010) Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. The ISME Journal 4:465–71Google Scholar
  48. Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346:1078CrossRefGoogle Scholar
  49. Thormann MN, Rice AV (2007) Fungi from peatlands. Fungal Divers:241–299Google Scholar
  50. Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176(2):437–447. CrossRefPubMedGoogle Scholar
  51. Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401Google Scholar
  52. Wieder RK, Vitt DH (eds) (2006) Boreal peatland ecosystems. Springer, Berlin Heidelberg. Google Scholar
  53. Wright HE, Coffin B, Aaseng NE (eds) (1992) The patterned peatlands of Minnesota. University of Minnesota Press, MinneapolisGoogle Scholar
  54. Wurzburger N, Hartshorn AS, Hendrick RL (2004) Ectomycorrhizal fungal community structure across a bog-forest ecotone in southeastern Alaska. Mycorrhiza 14(6):383–389. CrossRefPubMedGoogle Scholar
  55. Wurzburger N, Higgins BP, Hendrick RL (2011) Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub. Ecol Evol 2:65–79CrossRefGoogle Scholar
  56. Zhang J, Kobert K, Flouri T et al (2013) PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30:614–620CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulUSA
  2. 2.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulUSA
  3. 3.Department of Tropical Plant and Soil SciencesUniversity of Hawai’i-ManoaHonoluluUSA

Personalised recommendations