Skip to main content
Log in

Nonlocal nonlinear model of Bernoulli–Euler nanobeam with small initial curvature and its application to single-walled carbon nanotubes

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Although the small-scale effect and initial curvature have significant influence on the nonlinear mechanical property of the nanobeam, there are few researches to consider both factors. On the basis of the nonlocal differential constitutive relation, this paper, for the first time, presents a nonlinear partial differential–integral equation model of Bernoulli–Euler nanobeam with a small initial curvature. Then the model is applied to research the static bending and the frequency of free vibration for the single-walled carbon nanotubes (SWCNTs). This study indicates that the static deformations are relate to the load direction due to the initial curvature. In addition, the initial curvature complicates the relation between the free vibration frequencies and vibration amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ansari R, Pourashraf T, Gholami R et al (2017) Postbuckling behavior of functionally graded nanobeams subjected to thermal loading based on the surface elasticity theory. Meccanica 52(1–2):283–297

    Article  MathSciNet  Google Scholar 

  • Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys Rev B 69(11):115415

    Article  Google Scholar 

  • Askes H, Aifantis EC (2009) Gradient elasticity and flexural wave dispersion in carbon nanotubes. Phys Rev B 80(80):2665–2668

    Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48(13):1962–1990

    Article  Google Scholar 

  • Barretta R, Čanađija M, Luciano R et al (2018) Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. Int J Eng Sci 126:53–67

    Article  MathSciNet  Google Scholar 

  • Cerqueira TFT et al (2014) Density-functional tight-binding study of the collapse of carbon nanotubes under hydrostatic pressure. Carbon 69(2):355–360

    Article  Google Scholar 

  • Challamel N, Zhang Z, Wang CM (2015) Nonlocal equivalent continua for buckling and vibration analyses of microstructured beams. J Nanomech Micromech 5(1):A40140041-13

    Article  Google Scholar 

  • Cleland AN (2013) Foundations of nanomechanics: from solid-state theory to device applications. Springer Science & Business Media, Berlin

    Google Scholar 

  • Dai H et al (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147–150

    Article  Google Scholar 

  • Duan WC, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101(2):024305

    Article  Google Scholar 

  • Ebrahimi F, Barati M (2017) A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Compos Struct 159:174–182

    Article  Google Scholar 

  • Eltaher MA, Abdraboh AM, Almitani KH (2018) Resonance frequencies of size dependent perforated nonlocal nanobeam. Microsyst Technol 24(9):3925–3937

    Article  Google Scholar 

  • Eringen A, Cemal A (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  • Fereidoon A, Rafiee R, Maleki Moghadam R (2013) A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method. Mech Compos Mater 49(3):325–332

    Article  Google Scholar 

  • Guldi DM (2006) Carbon nanotubes. Science and application. Meyyappan M (ed) Angewandte Chemie

  • Hill FA, Havel TF, Livermore C (2009) Modeling mechanical energy storage in springs based on carbon nanotubes. Nanotechnology 20(25):139–142

    Article  Google Scholar 

  • Hosseini SAH, Rahmani O (2016) Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl Phys A 122(3):1–11

    Article  Google Scholar 

  • Jamal-Omidi M, ShayanMehr M, Shokrollahi S et al (2016) A study on nonlinear vibration behavior of CNT-based representative volume element. Aerosp Sci Technol 55:272–281

    Article  Google Scholar 

  • Karlicić D, Kozić P, Pavlović R (2015) Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations. J Theor Appl Mech 53(1):217–233

    Article  Google Scholar 

  • Kreider W, Nayfeh AH (1998) Experimental investigation of single-mode responses in a fixed-fixed buckled beam. Nonlin Dyn 15(2):155–177

    Article  Google Scholar 

  • Liu WK, Karpov EG, Park HS (2006) Nano mechanics and materials: theory, multiscale methods and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Meyyappan M (2005) Carbon nanotubes: science and applications. CRC Press, Boca Raton

    Google Scholar 

  • Naik AK et al (2009) Towards single-molecule nanomechanical mass spectrometry. Nat Nanotechnol 4(7):445–450

    Article  Google Scholar 

  • Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, Hoboken

    MATH  Google Scholar 

  • Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics. Wiley, Hoboken

    Book  Google Scholar 

  • Pakdemirli M, Karahan MMF (2010) A new perturbation solution for systems with strong quadratic and cubic nonlinearities. Math Methods Appl Sci 33(6):704–712

    MathSciNet  MATH  Google Scholar 

  • Paola MD, Failla G, Zingales M (2009) Physically-based approach to the mechanics of strong nonlocal linear elasticity theory. J Elast 97(2):103–130

    Article  Google Scholar 

  • Peng J, Wu J, Hwang KC, Song J, Huang Y (2008) Can a single-wall carbon nanotube be modeled as a thin shell? J Mech Phys Solids 56(6):2213–2224

    Article  MathSciNet  Google Scholar 

  • Rafiee R, Moghadam RM (2014) On the modeling of carbon nanotubes: a critical review. Compos B Eng 56(1):435–449

    Article  Google Scholar 

  • Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2):288–307

    Article  Google Scholar 

  • Romano G, Barretta R, Diaco M et al (2017) Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci 121:151–156

    Article  Google Scholar 

  • Tien WM, Namachchivaya NS, Bajaj AK (1994) Non-linear dynamics of a shallow arch under periodic excitation—I. 1: 2 internal resonance. Int J Non-Lin Mech 29(3):349–366

    Article  Google Scholar 

  • Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98(12):124301

    Article  Google Scholar 

  • Washizu K (1982) Variational methods in elasticity and plasticity. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Wei Y et al (2013) Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett 13(1):26–30

    Article  Google Scholar 

  • Yakobson BI, Brabec CJ, Berhnolc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514

    Article  Google Scholar 

  • Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71(19):195404

    Article  Google Scholar 

  • Zhang R et al (2011) Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv Mater 23(30):3387–3391

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (Grant No. 11562009), as well as the Natural Science Foundation of Kunming university of science and technology (Grant No. KKSY201406057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Zhang, S., Li, J. et al. Nonlocal nonlinear model of Bernoulli–Euler nanobeam with small initial curvature and its application to single-walled carbon nanotubes. Microsyst Technol 25, 4303–4310 (2019). https://doi.org/10.1007/s00542-019-04365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04365-8

Navigation