Skip to main content

Advertisement

Log in

The Quaternary volcanogenic landscape and volcaniclastic sediments of the Netherlands Antilles: markers for an in-active volcanic arc

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Quaternary volcanogenic landscape and the volcanogenic sediments of the Netherlands Antilles (NA) (Aruba, Bonaire, Curaçao) reflect the most recent stage of the evolution of the Cretaceous to early Cenozoic Great Arc of the Caribbean Plate. They provide a “geoscientific keyhole” to look at its geodynamic and lithological evolution at different scales. This sedimentological, micropaleontological, geomorphological/geo-morphometrical, litho-chemical and mineralogical approach, holistic in essence and focused as to the target, can also be taken to better understand other volcanic arcs or facies zones, e.g., in Colombia. It allows for a climatic-geomorphological zonation governed by uplift and erosion of the volcanic arc in time and space. The host rock quality of landforms for volcanogenic sediments abundant in heavy minerals (HM) that are known as the most suitable markers for provenance and geodynamics can be arranged in decreasing order of significance as follows: coastal-marine volcaniclastic > fluvial–marine (deltaic) > aeolian-coastal-marine > mass wasting > residual > coastal-marine calcareous. The coastal sediments facing towards the plate margin contain Cr–Fe–Ti–Nb–Th–U–Zr-bearing HM which derived from off-shore ophiolites, Precambrian shelf sediments of the South-American Plate, volcanic–subvolcanic units, and mantle source rocks. The Quaternary hydrography evolved on different erosion levels and exposes different basement lithologies of volcanic and subvolcanic type. The drainage system is controlled by faulting (tecto-variance) and the volcanic lithologies (litho-variance) both of which indicate different phases of tectonic and magmatic activity during arc emplacement. This in-active volcanic arc of the Netherlands Antilles has been shaped during the Cenozoic by the climate change and modern tectonics on a deeper level of erosion than the active volcanic arc of the Lesser Antilles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahnert FO (2015) Einführung in die geomorphologie. UTB GmbH, München, p 458

    Google Scholar 

  • Allen JRL, Thornley DM (2004) Laser granulometry of Holocene estuarine silts: effects of hydrogen peroxide treatment. Holocene 14:290–295

    Google Scholar 

  • Alva-Valdivia LM, López-Loera H (2011) A review of iron oxide transformations, rock magnetism and interpretation of magnetic anomalies: El Morro Mine (Brazil), a case study. Geof Int 50–3:341–362

    Google Scholar 

  • Aristizábal CO, Ferrari AL, Silva GC (2009) Control neotectónico del diapirismo de lodo en la región de Cartagena, Colombia. Ing Investig Desarro 8:42–50

    Google Scholar 

  • Bağci U, Parlak O, Höck V (2016) Whole-rock and mineral chemistry of cumulates from the Kızıldağ (Hatay) ophiolite (Turkey): clues for multiple magma generation during crustal accretion in the southern Neotethyan ocean. Miner Mag 69:53–76

    Google Scholar 

  • Ballantyne CK (2010) A general model of autochthonous blockfield evolution. Permafrost Periglac Process 21:289–300

    Google Scholar 

  • Bates RL, Jackson JA (2005) Glossary of geology. American Geological Institute, Alexandria, p 779

    Google Scholar 

  • Beardsley AG, Ave-Lallemant HG (2007) Oblique collision and accretion of the Netherlands Leeward Antilles to south America. Tectonics 26:09. https://doi.org/10.1029/2006TC002028

    Article  Google Scholar 

  • Beechie TJ, Liermann M, Pollock MM, Baker S, Davies J (2006) Channel pattern and river-floodplain dynamics in forested mountain river systems. Geomorphology 78:124–141

    Google Scholar 

  • Beets DJ, Klaver GT, MacGillavry HJ (1977) Geology of the Creatceous and early Tertiary of Bonaire. Guide to the field excursions, 8th Caribbean Geoloical Conference, Amsterdam. Gem Univ Amst (GUA) 10:18–28

    Google Scholar 

  • Beets DJ, Metten R, Hoogendoorn R (1996) Geological map of Aruba scale 1:50000. Natuurwetenschappelijke Studieskring voor het Caraïbisch Gebied. Rijks Geol. Dienst, Amsterdam. Rijks Geologische Dienst, De Grafische Harlem

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Pet 143:602–622

    Google Scholar 

  • Bernal-Olaya R, Mann P, Vargas C (2015) Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean Margin of Northwestern Colombia. In: Bartolini C, Mann P (eds) Petroleum geology and potential of the Colombian Caribbean Margin. AAPG Memoir, London, pp 247–270

    Google Scholar 

  • Beuselinck L, Govers G, Poesen J, Degraer G, Froyen L (1998) Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method. CATENA 32:193–208

    Google Scholar 

  • Bird ECF (2008) Coastal geomorphology: an introduction. John Wiley & Sons, Chichester, p 411

    Google Scholar 

  • Blott SJ, Pye K (2006) Particle size distribution analysis of sand-sized particles by laser diffraction: an experimental investigation of instrument sensitivity and the effects of particle shape. Sedimentology 53:671–685

    Google Scholar 

  • Bonilla A, Cramer T, De Grave J, Alessio B, Glorie S, Kroonenberg S (2021) The NW Amazonian Craton in Guainía and Vaupes departments, Colombia: transition between orogenic to anorogenic environments during the Paleo-Mesoproterozoic. Precambrian Res 360:1–37

    Google Scholar 

  • Bonilla-Pérez A, Frantz JC, Charão-Marques J, Cramer T, Franco-Victoria JA, Mulocher E, Amaya-Perea Z (2013) Petrografía, Geoquímica y Geocronología del Granito de Parguaza en Colombia. Bol Geol 35:83–104

    Google Scholar 

  • Bonilla-Pérez A, Frantz JC, Charão-Marques J, Cramer T, Franco Victoria JA, Amaya-Perea Z (2016) Magmatismo rapakivi en la cuenca media del Río Inírida, Departamento de Guainía. Colomb Bol Geol 38:17–32

    Google Scholar 

  • Bonilla-Pérez A, Franco JA, Cramer T, Poujol M, Cogné N, Nachtergaele S, De Grave J (2020) Apatite LA-ICP-MS U–Pb and fission-track geochronology of the Caño Viejita gabbro in E-Colombia: Evidence for Grenvillian intraplate rifting and Jurassic exhumation in the NW Amazonian Craton. J S Am Earth Sci 98:38

    Google Scholar 

  • Boogs S Jr (2009) Petrology of sedimentary rocks, 2nd edn. Cambridge University Press, Cambridge, p 607

    Google Scholar 

  • Brooks CK (2005) The Skaergaard intrusion: from icon to precious metal deposit. Geol Today 21:218–221

    Google Scholar 

  • Calais E, Symithe S, Mercier de Lepinay B, Prepetit C (2016) Plate boundary segmentation in the northeastern Caribbean from geodetic measurements and Neogene geological observations. CR Geosci 348:42–51

    Google Scholar 

  • Callahan J (1987) A nontoxic heavy liquid and inexpensive filters for separation of minerals grains. J Sediment Pet 57:765–766

    Google Scholar 

  • Cardona A, Valencia V, Garzón A, Montes C, Ojeda G, Ruiz J, Weber M (2010a) Permian to Triassic I to S–type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: tectonic setting and implications within Pangea paleogeography. J S Am Earth Sci 29:772–783

    Google Scholar 

  • Cardona A, Valencia V, Bustamante C, García-Casco A, Ojeda G, Ruiz J, Saldarriaga M, Weber M (2010b) Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent. J S Am Earth Sci 29:784–804

    Google Scholar 

  • Cas RAF, Wright JV (1987) Volcaniclastic rocks and successions, modern and ancient. Allen and Unwin, London, p 528

    Google Scholar 

  • Černý P (1991) Rare-element granitic pegmatites: Part I: Anatomy and internal evolution of pegmatite deposits. Part II: regional and global environments and petrogenesis. Geosci Can 18:49–81

    Google Scholar 

  • Church M (2002) Geomorphic thresholds in riverine landscapes. Freshw Biol 47:541–557

    Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The Interpretation of Igneous Rocks. George Allen and Unwin, London, p 450

    Google Scholar 

  • De Buisonjé P (1974) Neogene and Quaternary geology of Aruba, Curaçao, and Bonaire (Netherlands Antilles). Uitg Natuurwetenschappelijke Studiekring Voor Suriname En De Nederlandse Antillen 78:29

    Google Scholar 

  • DeFalco G, Magni P, Teräsvuori LMH, Matteucci G (2004) Sediment grain size and organic carbon distribution in the Cabras Lagoon (Sardinia, Western Mediterranean). Chem Ecol 20:367–377

    Google Scholar 

  • Dill HG (2015a) The Hagendorf-Pleystein Pegmatite Province, SE Germany: the center of pegmatites in an ensialic orogen (modern approaches in solid earth sciences). Springer, Dortrecht, p 343

    Google Scholar 

  • Dill HG (2015b) Pegmatites and aplites: their genetic and applied ore geology. Ore Geol Rev 69:417–561

    Google Scholar 

  • Dill HG (2017) An overview of the pegmatitic landscape from the pole to the equator: applied geomorphology and ore guides. Ore Geol Rev 91:795–823

    Google Scholar 

  • Dill HG, Kaufhold S (2018) The Totumo mud volcano and its near-shore marine sedimentological setting (North Colombia): from sedimentary volcanism to epithermal mineralization. Sed Geol 366:14–31

    Google Scholar 

  • Dill HG, Techmer A (2021) Heavy and light marker minerals around the East African Rift System (EARS) with special reference to the evolution of Zanzibar Island, Tanzania. J Afr Earth Sci 181:199

    Google Scholar 

  • Dill HG, Goldmann S, Cravero F (2018) Zr–Ti–Fe placers along the coast of NE Argentina: provenance analysis and ore guide for the metallogenesis in the South Atlantic Ocean. Ore Geol Rev 95:131–160

    Google Scholar 

  • Dill HG, Ufer K, Bornemann A, Techmer A, Buzatu A (2019) From the strand plain to the reef: A sedimentological–geomorphological study of a Holocene coast affected by mud diapirism (Archipélago Rosario- Barú, Colombia). Mar Geol 415:953

    Google Scholar 

  • Dill HG, Buzatu A, Balaban S-J (2021) Straight to low-sinuosity drainage systems in a Variscan-Type orogen-Constraints from tectonics, lithology and climate. Minerals 11:933. https://doi.org/10.3390/min11090933,1-58

    Article  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos 46:319–335

    Google Scholar 

  • Elsworth D, Voight B, Thompson G, Young SR (2004) Thermal-hydrologic mechanism for rainfall-triggered collapse of lava domes. Geology 32:969–972

    Google Scholar 

  • Evans IS, Minár J (2011) A classification of geometric variables. Geomorphometry 2011:105–107

    Google Scholar 

  • Feuillet N, Beauducel F, Tapponnier P (2011) Tectonic context of moderate to large historical earthquakes in the Lesser Antilles and mechanical coupling with volcanoes. J Geophys Res 116:B10308. https://doi.org/10.1029/2011JB008443

    Article  Google Scholar 

  • Fisher RV (1961) Proposed classification of volcaniclastic sediments and rocks. Geol Soc Am Bull 72:1409–1414

    Google Scholar 

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer-Verlag, Berlin, p 196

    Google Scholar 

  • Fouke BW, Beets CJ, Meyers WJ, Hanson GN, Melillo AJ (1996) 87Sr/86Sr chronostratigraphy and dolomitization history of the Seroe Domi formation, Curaçao (Netherlands Antilles). Facies 35:293–320

    Google Scholar 

  • Franco Victoria JA, Cramer T, de Chaves AO, Horn HA, Poujol M (2021a) Geochronology of monazite related to REE, Nb–Ta and U–Th bearing minerals from Mesoproterozoic anorogenic magmatism in the E-Colombian Amazonian Craton: links to mantle plume activity in the Columbia (Nuna) supercontinent. J S Am Earth Sci 109:3228

    Google Scholar 

  • Franco Victoria JA, Cramer T, Bonilla-Pérez A, Castañeda AJ, Poujol M, Amaya-Perea Z (2021b) Mineralogía y geocronología de rutilo-(Nb, Ta) relacionado a casiterita y columbita-tantalita provenientes de rocas Mesoproterozoicas del Cratón Amazónico cerca de Cachicamo, Colombia. Bol Geol 43:99–126

    Google Scholar 

  • Friedman GM, Sanders JE, Kopaska-Merkel DC (1992) Principles of sedimentary deposits. MacMillan Publishing Company, New York, p 717

    Google Scholar 

  • Friend PF (1983) Towards the field classification of alluvial architecture or sequence. In: Collinson JD, Lewin J (eds) Modern and ancient fluvial systems. International association of sedimentologists special publications. Blackwell Publishing Ltd, Oxford, pp 345–354

    Google Scholar 

  • Garmon WT, Allen CD, Groom KM (2017) Geologic and Tectonic Background of the Lesser Antilles. In: Allen C (ed) Landscapes and Landforms of the Lesser Antilles. World geomorphological landscapes. Springer, Cham. https://doi.org/10.1007/978-3-319-55787-8_2

    Chapter  Google Scholar 

  • Geyh MA, Schleicher H (1990) Absolute age dating determination physical and chemical dating methods and their application. Springer, Berlin, p 63

    Google Scholar 

  • Gill R (2010) Igneous rocks and processes: a practical guide, 1st edn. Wiley-Blackwell, New Jersey, p 428

    Google Scholar 

  • Gillespie MR, Styles MT (1997) BGS Rock classification scheme volume 1. Classification of igneous rocks. British Geological Survey Research Report, RR 97–2, p 52

  • Gischler E, Lomando AJ, Hudson JH, Holmes CW (2000) Last interglacial reef growth beneath Belize barrier and isolated platform reefs. Geology 28:387–390

    Google Scholar 

  • Goossens D (2008) Techniques to measure grain size distributions of loamy sediments: a comparative study of ten instruments for wet analysis”. Sedimentology 55:65–96

    Google Scholar 

  • Gordon BL (2013) In defense of uniformitarianism. Perspect Sci Chris Faith 65:79–86

    Google Scholar 

  • Goren L, Willett SD, Herman F, Braun J (2014) Coupled numerical-analytical approach to landscape evolution modeling. Earth Surf Proc Land 39:522–545

    Google Scholar 

  • Gorney D, Escalona A, Mann P, Magnani MB, BOLIVAR Study Group (2007) Chronology of Cenozoic tectonic events in western Venezuela and the Leeward Antilles based on integration of offshore seismic reflection data and on-land geology. Am Assoc Pet Geol Bull 91:653–684

    Google Scholar 

  • Granja HM (2009) Rocky coast. In: Isla FI, Iribane O (eds) coastal zones and estuaries. Eolss Publishers, Oxford, pp 135–162

    Google Scholar 

  • Hallsworth CR, Chisholm JI (2008) Provenance of late Carboniferous sandstones in the Pennine Basin (UK) from combined heavy mineral, garnet geochemistry and palaeocurrent studies. Sed Geol 203:196–212

    Google Scholar 

  • Hallsworth CR, Knox RWOB (1999) BGS Rock Classification Scheme Classification of sediments and sedimentary rocks. British Geological Survey, Nottingham, Vol. 3 Research Report, RR 99–03

  • Hejl E (2005) A pictorial study of tafoni development from the 2nd millennium BC. Geomorphology 64:87–95

    Google Scholar 

  • Hippolyte J-C, Mann P (2011) Quaternary tectonic evolution of the Leeward Antilles islands (Aruba, Bonaire, Curaçao) from fault kinematic analysis. Mar Pet Geol 28:259–277

    Google Scholar 

  • James KH (2005) A simple synthesis of Caribbean geology. Caribb J Earth Sci 39:69–82

    Google Scholar 

  • James KH, Lorente MA, Pindfell JL (eds) (2009) The origin and evolution of the Caribbean Plate, 328th edn. The Geological Society of London Special Publication, London, pp 1–858

    Google Scholar 

  • Kerr AC, Tarney J, Marriner GF, Nivia A, Klaver G, Saunders AD (1996) The geochemistry and tectonic setting of Late Cretaceous Caribbean and Colombian. J S Am Earth Sci 9:111–120

    Google Scholar 

  • Knighton D (1998) Fluvial forms and processes: a new perspective, 2nd edn. Taylor & Francis Ltd, pp 400

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Google Scholar 

  • Kutterolf S, Diener R, Schacht U, Krawinkel H (2008) Provenance of the Carboniferous Hochwipfel Formation (Karawanken Mountains, Austria/Slovenia)- geochemistry versus petrography. Sediment Geol 203:246–266

    Google Scholar 

  • Lang L, Wang X, Hasi E, Hua T (2013) Nebkha (coppice dune) formation and significance to environmental change reconstructions in arid and semiarid areas. J Geogr Sci 23:344–358

    Google Scholar 

  • Langer MR, Hottinger L (2000) Biogeography of selected ‘“larger”’ foraminifera. Micropaleontology 46(1):105–126

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P (2002) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences subcommission on the systematics of igneous rocks, 2nd edn. Cambridge University Press, Cambridge, p 252

    Google Scholar 

  • LeBas M, LeMaitre R, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Pet 27:745–750

    Google Scholar 

  • Leighton MW, Pendexter C (1962) Carbonate rock types. In: Ham WE (ed) Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, Tulsa, pp 62–85

    Google Scholar 

  • Lewin A, Meinhold G, Hinderer M, Dawit EL, Bussert R, Lünsdorf NK (2020) Heavy minerals as provenance indicator in glaciogenic successions: an example from the Palaeozoic of Ethiopia. J Afr Earth Sci 165:103813

    Google Scholar 

  • MacMillan RA, Shary PA (2009) Landforms and landform elements in geomorphometry. In: Zhou Q, Lees BG, Tang G (eds) Advances in digital terrain analysis. Springer, Heidelberg

    Google Scholar 

  • Mantilla AM, Jentszsch G, Kley J, Alfonso-Pava C (2009) Configuration of the Colombian Caribbean margin: constraints from 2D seismic reflection data and potential fields interpretation, subduction zone geodynamics. Springer, Dubai, pp 247–271

    Google Scholar 

  • Marquette GC, Gray JT, Gosse JC, Courschene F, Stockli L, Macpherson G, Finkel R (2004) Felsenmeer, persistence under non-erosive ice in the Torngat and Kaumajet mountains, Quebec and Labrador, as determined by soil weathering and cosmogenic nuclide exposure dating. Can J Earth Sci 41:19–38

    Google Scholar 

  • Maury RC, Westbrook GK, Baker PE, Bouysse P, Westercamp D (1990) Geology of the Lesser Antilles. In: Dengo G, Case JE (eds) The geology of north. Volume H. Geological Society of America, Boulder, pp 141–166

    Google Scholar 

  • McEnroe SA, Robinson P, Panish PT (2000) Chemical and petrographic characterization of ilmenite and magnetite in oxide-rich cumulates of the Sokndal Region, Rogaland, Norway. Norges Geol Unders Bull 436:49–56

    Google Scholar 

  • Meinhold G (2010) Rutile and its applications in earth sciences. Earth Sci Rev 102:1–28

    Google Scholar 

  • Meinhold G, Anders B, Kostopoulos D, Reischmann T (2008) Rutile chemistry and thermometry as provenance indicator: an example from Chios Island. Greece Sediment Geol 203:98–111

    Google Scholar 

  • Meschede M, Frisch M (1998) A plate-tectonic model for the Mesozoic and early Cenozoic history of the Caribbean Plate. Tectonophysics 296:269–291

    Google Scholar 

  • Meschede M, Frisch W (2002) The evolution of the Caribbean Plate and its relation to global motion vectors: geometric constraints for an inter-American origin. In: Jackson TA (ed) Caribbean geology: into the third millennium : transactions of the fifteenth Caribbean geological conference. University of West Indies Press, West Indies, p 279

    Google Scholar 

  • Migoń P (2006) Granite landscapes of the world. Geomorphological landscapes of the world, 22nd edn. Oxford University Press, Oxford, p 416

    Google Scholar 

  • Migoń P, Thomas MF (2002) Grus weathering mantles—problems of interpretation. CATENA 49:5–24

    Google Scholar 

  • Morton AC, Whitham AG, Fanning CM (2005) Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: integration of heavy mineral, mineral chemical and zircon age data. Sed Geol 182:3–28

    Google Scholar 

  • Murray JW (1991) Ecology and palaeoecology of benthic foraminifera. Taylor & Francis, New Jersey

    Google Scholar 

  • Nichols G (2009) Sedimentology and stratigraphy. Wiley-Blackwell, New Jersey, p 432

    Google Scholar 

  • Pallard B, Castellarin A, Montanari A (2009) A look at the links between drainage density and flood statistics. Hydrol Earth Syst Sci 13:1019–1029

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone. Springer, Berlin, p 553

    Google Scholar 

  • Piraquive A, Kammer A, Bernet M, Cramer T, von Quadt A, Gómez C (2021) Neoproterozoic to Jurassic tectono-metamorphic events in the Sierra Nevada de Santa Marta Massif, Colombia: insights from zircon U-Pb geochronology and trace element geochemistry. Int Geol Rev. https://doi.org/10.1080/00206814.2021.1961317

    Article  Google Scholar 

  • Pober E, Faupl P (1988) The chemistry of detrital chrome spinels and its implications for the geodynamic evolution of the Eastern Alps. Geol Rundsch 77:641–670

    Google Scholar 

  • Prušinskienė S, Šiliauskas L, Skridlaitė G (2017) Varieties and chemical composition of magnetite in the Varėna Iron Ore Deposit. Chemija 28:39–57

    Google Scholar 

  • Ross PS, Peate IU, McClintock MK, Xu YG, Skilling IP, White JDL, Houghton BF (2005) Mafic volcaniclastic deposits in flood basalt provinces: a review. J Volcanol Geotherm Res 145(3–4):281–314

    Google Scholar 

  • Schmid R (1981) Descriptive nomenclature and classification of pyroclastic deposits and igneous rocks fragments: recommendations of the IUGS subcommission on the systematics of igneous rocks. Geology 9:41–43

    Google Scholar 

  • Selley RC (2000) Applied Sedimentology. Academic Press Inc, London, p 52

    Google Scholar 

  • Shalini G, Hegde VS, Soumya M, Korkoppa MM (2020) Provenance and implications of heavy minerals in the beach sands of India’s central west coast. J Coast Res 36(2):353–361

    Google Scholar 

  • Sparks BW (1971) Rocks and relief. Longman, London

    Google Scholar 

  • Spikings R, Paul AN (2019) The Permian–Triassic history of magmatic rocks of the Northern Andes (Colombia and Ecuador): supercontinent assembly and disassembly. Geol Colomb 2:41

    Google Scholar 

  • Steel RJ, Milliken KL (2013) Major advances in siliciclastic sedimentary geology, 1960–2012. Geol Soc Am Spec Pap 500:122–167

    Google Scholar 

  • Streckeisen A (1978) IUGS Subcommission on the Systematics of Igneous Rocks. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks. Recommendations and suggestions. Neues Jahrbuch Für Mineralogie 134:1–14

    Google Scholar 

  • Streckeisen A (1979) Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks: recommendations and suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology 7:331–335

    Google Scholar 

  • Stroeven AP, Fabel D, Hättestrand C, Harbor J (2002) A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles. Geomorphology 44:145–154

    Google Scholar 

  • Summerfield MA (1991) Global geomorphology. John Wiley and Sons Inc., New York, p 537

    Google Scholar 

  • Sumner PD, Meiklejohn KI, Nel W, Hedding DW (2004) Thermal attributes of rock weathering: zonal or azonal? A comparison of rock temperatures in different environments. Polar Geogr 28:79–92

    Google Scholar 

  • Syracuse E, Maceira M, Prieto G, Zhang H, Ammon Ch (2016) Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth Planet Sci Lett 444:139–149

    Google Scholar 

  • Takahashi K, Tanaka H (2020) Experimental and numerical study on wave absorbing breakwater using buttress. In: Trung VN, Xiping D, Thanh TT (eds) APAC 2019. Springer, Singapore, pp 979–986

    Google Scholar 

  • Todd SP (1989) Stream-driven, high-density gravelly traction carpets: possible deposits in the Traberg Conglomerate Formation, SW Ireland, and some theoretical considerations of their origin. Sedimentology 36:513–530

    Google Scholar 

  • Tucker ME (1991) Sedimentary petrology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Twidale CR, Vidal Romani JR (2005) Landforms and geology of granite terrains. Taylor & Francis Ltd, Amsterdam, p 354

    Google Scholar 

  • Van der Lelij R, Spikings RA, Kerr AC, Kounov A, Cosca M, Chew D, Villagomez D (2010) Thermochronology and tectonics of the Leeward Antilles: evolution of the southern Caribbean Plate boundary zone. Tectonics 29:TC6003. https://doi.org/10.1029/2009TC002654

    Article  Google Scholar 

  • Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshw Biol 47:517–539

    Google Scholar 

  • Weibel R, Friis H (2004) Opaque minerals as keys for distinguishing oxidizing and reducing diagenetic conditions in the Lower Triassic Bunter Sandstone, North German Basin. Sed Geol 169:129–149

    Google Scholar 

  • White RV, Tarney J, Kerr AC, Saunders AD, Kempton PD, Pringles MS, Klaver A (1999) Modification of the oceanic plateau Aruba, Dutch Caribbean: implications for the generation of continental crust. Lithos 46:43–68

    Google Scholar 

  • Willer F (1952) Uma nova variedade da zirconita. An Acad Bras Ciênc 24:249–259

    Google Scholar 

  • Winchester JA, Floyd PA (1976) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Google Scholar 

  • Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II Evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413

    Google Scholar 

Download references

Acknowledgements

We acknowledge with thanks the constructive comments of T. Cramer and another anonymous reviewer made to the first draft of our paper. We extend our gratitude also to W. C. Dullo, EiC of the International Journal of Earth Sciences for his editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald G. Dill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dill, H.G., Balaban, SI., Buzatu, A. et al. The Quaternary volcanogenic landscape and volcaniclastic sediments of the Netherlands Antilles: markers for an in-active volcanic arc. Int J Earth Sci (Geol Rundsch) 111, 149–172 (2022). https://doi.org/10.1007/s00531-021-02112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02112-x

Keywords

Navigation