Skip to main content
Log in

Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K–40Ar mica and U–Pb zircon evidence

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

U–Pb SHRIMP zircon crystallization ages and Ar–Ar and K–Ar mica cooling ages for basement rocks of the Yaminué and Nahuel Niyeu areas in northeastern Patagonia are presented. Granitoids that cover the time span from Ordovician to Early Triassic constitute the main outcrops of the western sector of the Yaminué block. The southern Yaminué Metaigneous Complex comprises highly deformed Ordovician and Permian granitoids crosscut by undeformed leucogranite dikes (U–Pb SHRIMP zircon age of 254 ± 2 Ma). Mica separates from highly deformed granitoids from the southern sector yielded an Ar–Ar muscovite age of 182 ± 3 Ma and a K–Ar biotite age of 186 ± 2 Ma. Moderately to highly deformed Permian to Early Triassic granitoids made up the northern Yaminué Complex. The Late Permian to Early Triassic (U–Pb SHRIMP zircon age of 252 ± 6 Ma) Cabeza de Vaca Granite of the Yaminué block yielded Jurassic mica K–Ar cooling ages (198 ± 2, 191 ± 1, and 190 ± 2 Ma). At the boundary between the Yaminué and Nahuel Niyeu blocks, K–Ar muscovite ages of 188 ± 3 and 193 ± 5 Ma were calculated for the Flores Granite, whereas the Early Permian Navarrete granodiorite, located in the Nahuel Niyeu block, yielded a K–Ar biotite age of 274 ± 4 Ma. The Jurassic thermal history is not regionally uniform. In the supracrustal exposures of the Nahuel Niyeu block, the Early Permian granitoids of its western sector as well as other Permian plutons and Ordovician leucogranites located further east show no evidence of cooling age reset since mica ages suggest cooling in the wake of crystallization of these intrusive rocks. In contrast, deeper crustal levels are inferred for Permian–Early Triassic granitoids in the Yaminué block since cooling ages for these rocks are of Jurassic age (198–182 Ma). Jurassic resetting is contemporaneous with the massive Lower Jurassic Flores Granite, and the Marifil and Chon Aike volcanic provinces. This intraplate deformational pulse that affected northeastern Patagonia during the Early Jurassic (Sinemurian–Pliensbachian) was responsible for the partial (re)exhumation of the mid-crustal Paleozoic basement along reactivated discrete NE–SW to ENE–WSW lineaments and the resetting of isotopic systems. These new thermochronological data indicate that Early Permian magmatic rocks of the Nahuel Niyeu block were below 300 °C for ca. 20 Ma prior to the onset of the main magmatic episode of the Late Permian to Triassic igneous and metaigneous rocks of the Yaminué block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aragón E, Dalla Salda L, Varela R, Benialgo A (1999) Jurassic resetted ages of Gonzalito SEDEX deposit, northeastern Patagonia. II South American Symposium on Isotope Geology I, pp 7–10

  • Basei MAS, Varela R, Sato AM, Siga Jr O, Llambías EJ (2002) Geocronología sobre rocas del Complejo Yaminué, Macizo Norpatagónico, Río Negro, Argentina. 15th Congreso Geológico Argentino, vol 3, pp 117–122

  • Busteros A, Giacosa R, Lema H, Zubia M (1998) Descripción geólogica de la Hoja Sierra Grande (4166-IV), escala 1:250000, provincia de Río Negro. Instituto de Geología y Recursos Minerales, SEGEMAR, Boletín 241, Buenos Aires, p 75

  • Büttner SH, Glodny J, Lucassen F, Wemmer K, Erdmann S, Handler R, Franz G (2005) Ordovician metamorphism and plutonism in the Sierra de Quilmes metamorphic complex: implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina). Lithos 83:143–181

    Article  Google Scholar 

  • Cagnoni M, Linares E, Ostera H, Parica C, Remesal M (1993) Caracterización geoquímica de los metasedimentos de la Formación Nahuel Niyeu: implicancias sobre su proveniencia y marco tectónico. 13th Congreso Geológico Argentino and 2nd Congreso de Exploración de Hidrocarburos, vol 1. Buenos Aires, pp 281–286

  • Caminos R (1983) Descripción Geológica de las Hojas 39 g, Cerro Tapiluke y 39 h, Chipauquil, provincia de Río Negro. Servicio Geológico Nacional, (unpublished). Buenos Aires, p 41

  • Caminos R (2001) Hoja Geológica N 4166-I Valcheta, provincia de Río Negro, Boletín 310, Servicio Geológico Minero Argentino, Buenos Aires, p 78

  • Caminos R, Chernicoff C, Varela R (1994) Evolución tectónico-metamórfica y edad del Complejo Yaminué, Basamento pre-andino norpatagónico, República Argentina. 7th Congreso Geológico Chileno, Actas II. Concepción, pp 1301–1305

  • Chernicoff CJ, Caminos R (1996) Estructura y metamorfismo del Complejo Yaminué, Macizo Norpatagónico oriental, provincia de Rio Negro. Revista de la Asociación Geológica Argentina 51:107–118

    Google Scholar 

  • Chernicoff CJ, Zappettini EO, Santos JOS, McNaughton NJ, Belousova E (2013) Combined U-Pb SHRIMP and Hf isotope study of the Late Paleozoic Yaminué Complex, Río Negro province, Argentina: implications for the origin and evolution of the Patagonia composite terrane. Geosci Front 4:37–56. doi:10.1016/j.gsf.2012.06.003

    Article  Google Scholar 

  • Croce F, Lince Klinger F, Giménez ME, Martínez MP, Ruiz F (2009) Estimación de profundidades del Complejo Plutónico Navarrete mediante procesamiento gravimétrico. Geoacta 34:25–38

    Google Scholar 

  • Dahl PS (1996) The crystal-chemical basis for differential argon retention in coexisting muscovite and biotite: Inferences from interlayer partitioning data and implications for geochronology. Contrib Min Petrol 123:22–39

    Article  Google Scholar 

  • Féraud G, Alric V, Fornari M, Bertrand H, Haller M (1999) The Mesozoic silicic volcanic Province of Patagonia synchronous with the Gondwana Break-up and subduction: spacetime evolution evidenced by 40Ar/39Ar data. Earth Planet Sci Lett 172:83–96

    Article  Google Scholar 

  • Franzese JR, Spalletti LA (2001) Late Triassic-early Jurassic continental extension in southwest Gondwana: tectonic segmentation and pre-break-up rifting. J S Am Earth Sci 14:257–270

    Article  Google Scholar 

  • Giacosa RE (1997) Geología y petrología de las rocas pre-cretácicas de la región de sierra de Pailemán, provincia de Río Negro. Revista de la Asociación Geológica Argentina 52:71–91

    Google Scholar 

  • Giacosa RE (2001) Zonas de cizalla frágil-dúctil neopaleozoicas en el nordeste de la Patagonia. Revista de la Asociación Geológica Argentina 56:131–140

    Google Scholar 

  • González SN, Greco GA, González PD, Sato AM, Llambías EJ, Varela R, Basei MAS (2014) Geología, petrografía y edad U–Pb de un enjambre longitudinal NO-SE de diques del Macizo Norpatagónico Oriental, Río Negro. Revista de la Asociación Geológica Argentina 71:174–183

    Google Scholar 

  • Gozálvez M (2009a) Petrografía y edad 40Ar-39Ar de leucogranitos peraluminosos al oeste de Valcheta. Macizo Nordpatagónico (Río Negro). Revista de la Asociación Geológica Argentina 64:275–284

    Google Scholar 

  • Gozálvez M (2009b) Caracterización del plutón San Martín y las mineralizaciones de wolframio asociadas, departamento Valcheta, provincia de Río Negro. Revista de la Asociación Geológica Argentina 64:409–425

    Google Scholar 

  • Grecco L, Gregori D (2011) Geoquímica y geocronología del Complejo Plutónico Pailemán, Comarca Nordpatagónica, Provincia de Río Negro. XVIII Congreso Geológico Argentino, p 2

  • Greco GA, González PD, González SN, Sato AM, Basei MAS, Tassinari CCG, Sato K, Varela R, Llambías EJ (2015) Geology, structure and age of the Nahuel Niyeu Formation in the aguada Cecilio area, North Patagonian Massif., Argentina. J S Am Earth Sci 62:12–32

    Article  Google Scholar 

  • Gregori DA, Kostadinoff J, Strazzere L, Raniolo A (2008) Significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina. Gondwana Res 14:429–450

    Article  Google Scholar 

  • Gregori DA, Kostadinoff J, Álvarez G, Raniolo A, Strazzere L, Martínez JC, Barros M (2013) Preandean geological configuration of the eastern North Patagonian Massif, Argentina. Geosci Front 4:693–708

    Article  Google Scholar 

  • Hansma J, Tohver E, Schrank C, Jourdan F, Adams D (2015) The timing of the Cape Orogeny: new 40Ar/39Ar age constraints on deformation and cooling of the Cape Fold Belt, South Africa. Gondwana Res. doi:10.1016/j.gr.2015.02.005

    Google Scholar 

  • Harrison TM, Duncan I, McDougall I (1985) Diffusion of 40Ar in Biotite: temperature, pressure and compositional effects. Geochim Cosmochim Acta 49:2461–2468

    Article  Google Scholar 

  • Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler M (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051

    Article  Google Scholar 

  • Jourdan F, Féraud G, Bertrand H, Kampunzu AB, Tshoso G, Watkeys MK, Le Gal B (2005) Karoo large igneous province: Brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data. Geology 33:745–748. doi:10.1130/G21632.1

    Article  Google Scholar 

  • Kirschner DL, Cosca MA, Masson H (2003) Timing of deformation in the Helvetic Alps: evidence from 40Ar/39Ar and Rb/Sr geochronology of white micas. Contrib Min Petrol. doi:10.1007/s00410-003-0461-2

    Google Scholar 

  • Lince Klinger F, Martínez P, Rapalini AE, Giménez ME, López de Luchi MG, Croce FA, Ruiz F (2010) Modelo gravimétrico en el borde noreste del Macizo Norpatagónico. Revista Brasileira de Geofísica 28:463–472

    Article  Google Scholar 

  • Lince Klinger F, León M, Martínez P, Weidmann C, Anci S, Álvarez O (2014) Modelo geofísico con datos gravimétricos y aeromagnéticos en el borde noreste del Macizo Norpatagónico, Río Negro, Argentina. Geoacta 39:51–61

    Google Scholar 

  • López de Luchi MG, Rapalini AE, Tomezzoli RN (2010) Magnetic fabric and microstructures of Late Paleozoic granitoids from the North Patagonian Massif: evidence of a collision between Patagonia and Gondwana? Tectonophysics 494:118–137

    Article  Google Scholar 

  • López de Luchi MG, Martínez Dopico C, Rapalini AE (2013) The Musters Stock: a hybrid quartz monzogabbro to granodiorite, west of Valcheta, Río Negro. 2° Simposio sobre Petrología Ígnea y Metalogénesis Asociada. Resúmenes. San Luis, pp 49–50

  • López de Luchi M, Martínez Dopico C, Rapalini A (2015) Geochemical and isotopic constraints on the sources of the Permian-Early Triassic granitoids of the northeastern sector of the North Patagonian Massif. 3° Simposio sobre Petrología Ígnea y Metalogénesis Asociada. Resúmenes. General Roca, pp 49–50

  • Ludwig K (2009) Squid 2; A User’s Manual. Berkeley Geochronology Center, 100p

  • Ludwig K (2012) User´s Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 5, 75p

  • Márquez MJ, Massaferro GI, Fernández MI (2010) El volcanismo del Complejo Marifil en Arroyo Verde, vertiente suroriental del Macizo de Somún Cura, Chubut. Revista de la Asociación Geológica Argentina 66:314–324

    Google Scholar 

  • Martínez Dopico CI, López de Luchi MG, Rapalini AE (2010a) Sources for the Ordovician granites in the NE North Patagonian Massif. EOS Trans. AGU, 91(26), Meet. Am. Suppl., Abstract, V11A-07. Foz de Iguazú

  • Martínez Dopico CI, López de Luchi MG, Wemmer K, Rapalini AE, Linares E (2010b) Further evidences for the widespread Ordovician Magmatism in the Northeastern North Patagonian Massif: testimony for the continuity of the Famatinian orogen. Bollettino di Geofisica Teorica ed Applicata 51:34–37

    Google Scholar 

  • Martínez Dopico CI, López de Luchi M, Rapalini AE (2014) Petrography and mineral chemistry of the Eraly Paleozoic metamorphic basement north of Valcheta town, Río Negro. XIX Congreso Geológico Argentino. Online files, 1p

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/40Ar method, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Naipauer M, García Morabito E, Marques J, Tunik M, Rojas Vera EA, Vujovich GI, Pimentel MP, Ramos VA (2012) Intraplate Late Jurassic deformation and exhumation in western central Argentina: constraints from surface and U–Pb detrital zircon ages. Tectonophysics 524–525:59–75

    Article  Google Scholar 

  • Navarrete C, Gianni G, Echaurren A, Lince Klinger F, Folguera A (2016) Episodic Jurassic to Lower Cretaceous intraplate compression in Central Patagonia during Gondwana breakup. J Geodyn. doi:10.1016/j.jog.2016.10.001

    Google Scholar 

  • Pankhurst RJ, Rapela CW (1995) Production of Jurassic rhyolites by anatexis of the lower crust of Patagonia. Earth Planet Sci Lett 134:23–36

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, Caminos R (1993) Problemas geocronológicos de los granitoides gondwánicos de Nahuel Niyeu, Macizo Norpatagónico 12th Congreso Geológico Argentino and 2nd Congreso de Exploración de Hidrocarburos, vol 4, pp 99–104

  • Pankhurst R, Riley T, Fanning C, Kelley S (2000) Episodic silicic volcanism in Patagonia and the Antartic Peninsula: chronology of magmatism associated with the break-up of Gondwana. J Petrol 41:605–625

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, López de Luchi MG, Rapalini AE, Fanning CM, Galindo C (2014) The Gondwana connections of northern Patagonia. J Geol Soc 171:313–328. doi:10.1144/jgs2013-081

    Article  Google Scholar 

  • Purdy JW, Jäger E (1976) K–Ar ages on rock forming minerals from the Central Alps. Memorie degli Istituti di Geologia e Mineralogia dell’ Universita di Padova 30:1–31

    Google Scholar 

  • Ramos VA (1984) Patagonia: ¿Un continente paleozoico a la deriva? 9th Congreso Geológico Argentino. San Carlos de Bariloche 2:311–325

    Google Scholar 

  • Rapalini AE, López de Luchi M, Martínez Dopico C, Lince Klinger F, Giménez M, Martínez P (2010) Did Patagonia collide against Gondwana in the Late Paleozoic? Insights from a multidisciplinary study of magmatic units of the North Patagonian Massif. Geol Acta 8:349–371. doi:10.1344/105.000001577

    Google Scholar 

  • Rapalini AE, López de Luchi M, Tohver E, Cawood PA (2013) The South American ancestry of the North Patagonian Massif: geochronological evidence for an autochthonous origin? Terra Nova 25:337–342. doi:10.1111/ter.12043

    Article  Google Scholar 

  • Sato AM, Basei MAS, Tickyj H, Llambías EJ, Varela R (2004) Granodiorita El Sótano: plutón jurásico deformado aflorante en el basamento de Las Grutas, Macizo Norpatagónico Atlántico. Revista de la Asociación Geológica Argentina 59:591–600

    Google Scholar 

  • Steenken A, Wemmer K, López de Luchi MG, Siegesmund S, Pawlig S (2004) Crustal Provenance and Cooling of the Basement Complexes of the Sierra de San Luis: an insight into the tectonic history of the Proto-Andean Margin of Gondwana. Gondwana Res 7:1171–1195

    Article  Google Scholar 

  • Stern RA (2001) A new isotopic and trace-element standard for the ion microprobe: preliminary thermal ionization mass spectrometry (TIMS) U–Pb and electron-microprobe data. Radiogenic Age and Isotopic Studies: Report 14, Geological Survey of Canada, Current Research 2001-F1, 11p

  • Tohver E, Cawood PA, Rossello E, López de Luchi MG, Rapalini A, Jourdan F (2008) New SHRIMP U–Pb and 40Ar/39Ar constraints on the crustal stabilization of southern South America, from the margin of the Rio de Plata (Sierra de Ventana) craton to northern Patagonia. EOS Abstracts, American Geophysical Union, Fall Meeting, T23C-2052

  • Tohver E, Cawood PA, Rosello EA, Jourdan F (2012) Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: evidence from the Sierras Australes of the southernmost Río de la Plata craton, Argentina. Gondwana Res 21:394–405. doi:10.1016/j.gr.2011.04.001

    Article  Google Scholar 

  • Tommezzoli RN, Rapalini AE, López de Luchi MG, Martínez Dopico CI (2013) Permian remagnetization of Ordovician granitoids in northeastern North Patagonian Massif, Argentina. Gondwana Res 24:192–202

    Article  Google Scholar 

  • Uriz NJ, Cingolani CA, Chemale F Jr, Macambira MB, Armstrong R (2011) Isotopic studies on detrital zircons of Silurian- Devonian siliciclastic sequences from Argentinean North Patagonia and Sierra de la Ventana regions: comparative provenance. Int J Earth Sci 100:571–589

    Article  Google Scholar 

  • Varela R, Sato K, González PD, Sato AM, Basei MAS (2009) Geología y geocronología Rb–Sr de granitoides de Sierra Grande, Provincia de Río Negro. Revista de la Asociación Geológica Argentina 64:275–284

    Google Scholar 

  • von Gosen W (2003) Thrust tectonics in the North Patagonian Massif (Argentina): implications for a Patagonian plate. Tectonics 22(1):1005. doi:10.1029/2001TC901039

    Google Scholar 

  • Wemmer K (1991) K/Ar-Altersdatierungsmöglichkeiten für retrograde Deformationsprozesse im spröden und duktilen Bereich-Beispiele aus der KTB-Vorbohrung (Oberpfalz) und dem Bereich der Insubrischen Linie (N-Italien). Göttinger Arbeiten zur Geologie und Paläontologie 51:1–61

    Google Scholar 

  • Zanettini JCM (1980) Sedimentitas Triásicas al sur de Sierra Grande (Provincias de Río Negro y Chubut). Revista de la Asociación Geológica Argentina 35:301–307

    Google Scholar 

  • Zanettini JCM (1981) La Formación Sierra Grande (provincia de Río Negro). Revista de la Asociación Geológica Argentina 36:160–179

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their detailed comments and W.C. Dullo for editorial handling. C.M.D. would like to thank F. Jourdan, T. Luppo and F. Narduzzi for discussions on a draft of the paper. University of Buenos Aires (PICTUBACYT X183), CONICET and ANPCYT (PICT20131162) financial support is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen I. Martínez Dopico.

Appendices

Appendix 1: Ar–Ar and K–Ar analytical data

Mineral

Location—UTM 19G (m)

K2O (wt %)

40 Ar* (nl/g)

40 Ar* (%)

Age (Ma)

2 s-Error (Ma)

E

S

Ms

694721.84

5474430.97

9.71

92.76

97.35

274.3

4.1

Ms

666977.79

5495311.79

10.67

68.99

97.08

190.1

2.0

Ms

652638.39

5477758.17

10.76

66.60

97.87

182.4

2.9

Ms

667073.98

5501161.11

10.67

72.11

93.93

198.2

2.2

Ms

701630.06

5503625.41

10.52

69.24

95.53

193.3

4.5

Ms

696415.99

5501265.17

10.54

67.43

98.09

188.2

2.9

Ms

705633.17

5503762.84

264.8

1.9

Bt

671771.72

5504188.83

191.4

1.4

Bt

652638.39

5477758.17

185.8

1.5

Appendix 2: U–Pb SHRIMP zircon data

Age (Ma)

% Discordancy

 

Spot

204Pb/206Pb

± %

207Pb/206Pb

± %

208Pb/206Pb

± %

Obs 206Pb/238U

± %

% common 206Pb

U (ppm)

Th (ppm)

Corr 206Pb/238U

206Pb/238U (1)

207Pb/206Pb (1)

238U/206Pb r

± %

207Pb r/206Pb r

± %

207Pb r/235U

± %

206Pb r/238U

± %

err corr

Notes

Sample SA101 (UTM 19G 652638.39E, 5477758.17S) Undeformed dike crosscutting V79

 SA101-07-01

1.6E − 4

35

0.074

0.9

0.109

1.3

0.470

0.8

0.28

295

105

0.169

1006.0

±12.5

965

±31

−4

5.921

1.3

0.071

1.5

1.659

2.0

0.169

1.3

0.660

Inh

 SA10107-02

1.4E − 4

33

0.053

1.2

0.399

0.8

0.117

0.4

0.26

1064

1384

0.040

253.0

±3.1

224

±43

−11

24.981

1.3

0.051

1.8

0.279

2.2

0.040

1.3

0.564

*

 SA101-07-03

2.6E − 4

38

0.054

1.7

0.048

3.0

0.114

0.7

0.47

484

59

0.041

255.6

±3.4

213

±79

−17

24.721

1.3

0.050

3.4

0.281

3.7

0.040

1.3

0.368

*

 SA101-07-05

1.7E − 4

27

0.073

0.9

0.456

1.0

0.460

1.0

0.30

362

521

0.160

952.8

±12.6

957

±27

0

6.278

1.4

0.071

1.3

1.559

1.9

0.159

1.4

0.733

Inh

 SA101-07-06

8.8E − 5

16

0.052

0.3

0.050

0.6

0.157

0.6

0.16

10333

1618

0.047

296.6

±3.5

225

±13

−24

21.238

1.2

0.051

0.6

0.329

1.3

0.047

1.2

0.904

 

 SA101-07-07

5.8E − 4

25

0.057

2.4

0.326

1.1

0.114

0.5

1.07

671

697

0.037

234.6

±3.1

125

±128

−47

26.982

1.3

0.049

5.4

0.248

5.6

0.037

1.3

0.238

 

SA101-07-08

1.8E − 4

33

0.053

1.3

0.468

0.8

0.112

0.9

0.33

822

1215

0.040

254.9

±3.2

232

±53

−9

24.796

1.3

0.051

2.3

0.282

2.6

0.040

1.3

0.490

*

 SA101-07-09

2.0E − 3

13

0.072

1.3

0.328

2.6

0.096

2.0

3.61

733

634

0.039

239.0

±3.3

−156

±253

−165

26.477

1.4

0.043

10.2

0.225

10.3

0.038

1.4

0.136

 

 SA101-07-10

8.1E − 5

44

0.126

0.5

0.028

3.6

0.258

1.0

0.14

1298

108

0.092

567.6

±6.9

2031

±11

258

10.864

1.3

0.125

0.6

1.589

1.4

0.092

1.3

0.901

 

 SA101-07-12

7.4E − 4

28

0.062

3.0

0.124

2.4

0.211

0.8

1.32

175

66

0.076

466.5

±6.9

252

±163

−46

13.326

1.5

0.051

7.1

0.530

7.2

0.075

1.5

0.211

 

 SA101-07-13

1.2E − 6

2913

0.058

1.5

0.028

2.5

0.189

0.4

0.00

759

51

0.063

393.8

±5.1

535

±38

36

15.874

1.3

0.058

1.7

0.505

2.2

0.063

1.3

0.612

 

Sample SA104 (UTM 19G 671771.72E, 5504188.83S)—Undeformed biotite monzogranite

 SA104-07-1

1.3E − 4

45

0.052

1.1

0.491

0.8

0.112

0.6

0.24

1179

1814

40.500

252.3

±3.3

219

±48

−13

25.049

1.3

0.051

2.1

0.278

2.5

0.040

1.3

0.542

*

 SA104-07-10

8.3E − 5

55

0.060

1.7

0.144

1.2

0.236

0.4

0.15

529

236

39.600

538.8

±6.7

553

±46

3

11.471

1.3

0.059

2.1

0.705

2.5

0.087

1.3

0.525

Inh

 SA104-07-11

2.6E − 4

33

0.058

1.3

0.408

0.9

0.115

0.4

0.48

840

1071

30.200

262.8

±3.3

362

±62

38

24.036

1.3

0.054

2.8

0.309

3.0

0.042

1.3

0.421

 

SA104-07-12

1.3E − 4

28

0.053

1.3

0.355

0.6

0.124

0.3

0.23

1804

2169

63.000

256.3

±3.1

230

±39

−10

24.659

1.2

0.051

1.7

0.284

2.1

0.041

1.2

0.587

*

 SA104-07-2

5.2E − 5

114

0.052

1.1

0.621

0.6

0.118

0.4

0.10

1232

2478

42.500

253.6

±3.1

246

±47

−3

24.922

1.3

0.051

2.0

0.283

2.4

0.040

1.3

0.522

*

 SA104-07-3

1.7E − 4

14

0.059

0.9

0.213

0.8

0.196

0.3

0.31

1035

662

58.700

410.9

±5.5

467

±26

14

15.195

1.4

0.056

1.2

0.511

1.8

0.066

1.4

0.770

 

 SA104-07-4

2.1E − 4

66

0.053

2.0

0.470

1.2

0.112

0.6

0.39

373

573

12.600

246.5

±3.5

203

±108

−18

25.652

1.4

0.050

4.7

0.270

4.9

0.039

1.4

0.295

*

 SA104-07-5

1.3E − 4

89

0.058

1.4

0.082

2.0

0.194

0.5

0.24

417

92

23.600

410.1

±5.3

447

±76

9

15.223

1.3

0.056

3.4

0.506

3.7

0.066

1.3

0.363

 

 SA104-07-6

3.5E − 4

36

0.060

1.9

0.216

2.0

0.211

0.5

0.62

387

234

24.200

450.2

±5.9

422

±88

−6

13.823

1.4

0.055

3.9

0.551

4.2

0.072

1.4

0.325

 

SA104-07-7

5.8E − 4

48

0.061

3.2

0.417

2.2

0.111

1.1

1.06

128

165

4.340

246.5

±4.2

311

±200

26

25.653

1.7

0.053

8.8

0.283

9.0

0.039

1.7

0.195

 

 SA104-07-8

1.1E − 3

30

0.058

3.3

0.649

1.5

0.112

0.9

1.93

181

374

6.330

252.6

±4.1

−197

±311

−178

25.019

1.7

0.042

12.4

0.234

12.5

0.040

1.7

0.132

 

 SA104-07-9

3.2E − 4

57

0.058

2.3

0.354

1.7

0.111

0.8

0.59

254

281

8.800

253.8

±3.7

336

±130

32

24.904

1.5

0.053

5.7

0.294

5.9

0.040

1.5

0.251

*

  1. Pbc and Pb* indicate the common and radiogenic portions, respectively. (1) Corrected for common Pb using measured 204Pb; *Stars indicate the zircons used in the calculation of Concordia Ages. Inh Inherited

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez Dopico, C.I., Tohver, E., López de Luchi, M.G. et al. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K–40Ar mica and U–Pb zircon evidence. Int J Earth Sci (Geol Rundsch) 106, 2343–2357 (2017). https://doi.org/10.1007/s00531-016-1430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1430-0

Keywords

Navigation