Skip to main content
Log in

Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate quantitative properties of nonnegative solutions \(u(x)\ge 0\) to the semilinear diffusion equation \(\mathcal {L}u= f(u)\), posed in a bounded domain \(\Omega \subset \mathbb {R}^N\) with appropriate homogeneous Dirichlet or outer boundary conditions. The operator \(\mathcal {L}\) may belong to a quite general class of linear operators that include the standard Laplacian, the two most common definitions of the fractional Laplacian \((-\Delta )^s\) (\(0<s<1\)) in a bounded domain with zero Dirichlet conditions, and a number of other nonlocal versions. The nonlinearity f is increasing and looks like a power function \(f(u)\sim u^p\), with \(p\le 1\). The aim of this paper is to show sharp quantitative boundary estimates based on a new iteration process. We also prove that, in the interior, solutions are Hölder continuous and even classical (when the operator allows for it). In addition, we get Hölder continuity up to the boundary. Particularly interesting is the behaviour of solution when the number \(\frac{2s}{1-p}\) goes below the exponent \(\gamma \in (0,1]\) corresponding to the Hölder regularity of the first eigenfunction \(\mathcal {L}\Phi _1=\lambda _1 \Phi _1\). Indeed a change of boundary regularity happens in the different regimes \(\frac{2s}{1-p} \gtreqqless \gamma \), and in particular a logarithmic correction appears in the “critical” case \(\frac{2s}{1-p} = \gamma \). For instance, in the case of the spectral fractional Laplacian, this surprising boundary behaviour appears in the range \(0<s\le (1-p)/2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aronson, D.G., Peletier, L.A.: Large time behavior of solutions of the porous medium equation in bounded domains. J. Differ. Equ. 39, 378–412 (1981)

    Article  MATH  Google Scholar 

  2. Barles, G., Chasseigne, E., Imbert, C.: Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. J. Eur. Math. Soc. (JEMS) 13(1), 1–26 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrios, B., Figalli, A., Valdinoci, E.: Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13(3), 609–639 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Blumenthal, R.M., Getoor, R.K.: The asymptotic distribution of the eigenvalues for a class of Markov operators. Pac. J. Math. 9, 399–408 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonforte, M., Figalli, A., Ros-Oton, X.: Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains. Commun. Pure Appl. Math. 70(8), 1472–1508 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonforte, M., Figalli, A., Vázquez, J.L.: Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains. Anal. PDE 11(4), 945–982 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonforte, M., Sire, Y., Vázquez, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium on bounded domains. Discrete Contin. Dyn. Syst. 35, 5725–5767 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonforte, M., Vázquez, J.L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218(1), 317–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonforte, M., Vázquez, J.L.: Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds. Nonlinear Anal. 131, 363–398 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezis, H., Kamin, S.: Sublinear elliptic equations in \(\mathbb{R}^N\). Manuscr. Math. 74, 87–106 (1992)

    Article  MATH  Google Scholar 

  11. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I. Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Lineaire 31(1), 23–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367(2), 911–941 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200(1), 59–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caffarelli, L.A., Stinga, P.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(3), 767–807 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non local semilinear equations. Commun. Partial Differ. Equ. 36(8), 1353–1384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Z.Q., Song, R.: Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226(1), 90–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Davies, E.B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge, x+197 pp. ISBN: 0-521-40997-7 (1990)

  21. Diaz, J.I., Rakotoson, J.M.: On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary. J. Funct. Anal. 257(3), 807–831 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dong, H., Kim, D.: Schauder estimates for a class of non-local elliptic equations. Discrete Contin. Dyn. Syst. 33(6), 2319–2347 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grubb, G.: Fractional Laplacians on domains, a development of Hörmander’s theory of mu-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jin, T., Xiong, J.: Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete Contin. Dyn. Syst. 35(12), 5977–5998 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kassmann, M.: A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differ. Equ. 34(1), 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I (Translated from the French by P. Kenneth), GMW 181. Springer, New York-Heidelberg, xvi+357 pp (1972)

  27. Ros-Oton, X.: Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat. 60(1), 3–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ros-Oton, X., Serra, J.: Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165(11), 2079–2154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ros-Oton, X., Serra, J.: Regularity theory for general stable operators. J. Differ. Equ. 260(12), 8675–8715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. R. Soc. Edinb. Sect. A 144(4), 831–855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Song, R., Vondracek, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields 125, 578–592 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tan, J.: Positive solutions for non local elliptic problems. Discrete Contin. Dyn. Syst. 33(2), 837–859 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vázquez, J.L.: The Dirichlet problem for the porous medium equation in bounded domains. Asymptotic behavior. Monatsh. Math. 142, 81–111 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vázquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. In: Nonlinear Elliptic and Parabolic Differential Equations, Disc. Cont. Dyn. Syst. S, vol. 7(4), 857–885 (2014)

Download references

Acknowledgements

M.B. and J.L.V. are partially funded by MTM2014-52240-P (Spain). A.F. has been supported by ERC Grant “Regularity and Stability of Partial Differential Equations (RSPDE)”. M.B. and J.L.V. would like to acknowledge the hospitality of the Mathematics Department of the University of Texas at Austin, where part of this work has been done. Also, M.B. is grateful for the hospitality of FIM at ETH Zürich. We would like to thank the anonymous referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Bonforte.

Additional information

Communicated by O. Savin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonforte, M., Figalli, A. & Vázquez, J.L. Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. Calc. Var. 57, 57 (2018). https://doi.org/10.1007/s00526-018-1321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1321-2

Keywords

Mathematics Subject Classification

Navigation