Skip to main content
Log in

Conditional risk based on multivariate hazard scenarios

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

We present a novel methodology to compute conditional risk measures when the conditioning event depends on a number of random variables. Specifically, given a random vector \((\mathbf {X},Y)\), we consider risk measures that express the risk of Y given that \(\mathbf {X}\) assumes values in an extreme multidimensional region. In particular, the considered risky regions are related to the AND, OR, Kendall and Survival Kendall hazard scenarios that are commonly used in environmental literature. Several closed formulas are considered (especially in the AND and OR scenarios). An application to spatial risk analysis involving real data is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adrian T, Brunnermeier M (2016) CoVaR. Am Econ Rev 106(7):1705–1741

    Article  Google Scholar 

  • AghaKouchak A (2014) Entropy-copula in hydrology and climatology. J Hydrometeorol 15(6):2176–2189

    Article  Google Scholar 

  • AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (eds) (2013) Extremes in a changing climate. Springer, Netherlands

    Google Scholar 

  • Azzalini A (2015) The R package sn: the skew-normal and Skew-\(t\) distributions (version 1.3-0). Università di Padova, Italia, http://azzalini.stat.unipd.it/SN

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew \(t\)-distribution. J R Stat Soc Ser B Stat Methodol 65(2):367–389

    Article  Google Scholar 

  • Bender J, Wahl T, Mudersbach C, Jensen J (2013) Flood frequency analysis and river confluences–univariate vs. multivariate extreme value statistics. In: ICWRER 2013 proceedings, vol 1056, pp 216–328

  • Bernard C, Czado C (2015) Conditional quantiles and tail dependence. J Multivar Anal 138:104–126

    Article  Google Scholar 

  • Bernardi M, Gayraud G, Petrella L (2015) Bayesian tail risk interdependence using quantile regression. Bayesian Anal 10(3):553–603

    Article  Google Scholar 

  • Bernardi M, Durante F, Jaworski P (2017) CoVaR of families of copulas. Stat Probab Lett 120:8–17

    Article  Google Scholar 

  • Brechmann E (2014) Hierarchical Kendall copulas: properties and inference. Can J Stat 42(1):78–108

    Article  Google Scholar 

  • Cook R, Johnson M (1981) A family of distributions for modelling nonelliptically symmetric multivariate data. J R Stat Soc Ser B 43(2):210–218

    Google Scholar 

  • Cook RD, Johnson ME (1986) Generalized Burr-Pareto-logistic distributions with applications to a uranium exploration data set. Technometrics 28(2):123–131. doi:10.2307/1270448

    Article  Google Scholar 

  • Côté MP, Genest C (2015) A copula-based risk aggregation model. Can J Stat 43(1):60–81

    Article  Google Scholar 

  • Cousin A, Di Bernardino E (2013) On multivariate extensions of value-at-risk. J Multivar Anal 119:32–46

    Article  Google Scholar 

  • De Michele C, Salvadori G, Passoni G, Vezzoli R (2007) A multivariate model of sea storms using copulas. Coast Eng 54:734–751. doi:10.1016/j.coastaleng.2007.05.007

    Article  Google Scholar 

  • Di Bernardino E, Palacios-Rodríguez F (2016) Estimation of extreme quantiles conditioning on multivariate critical layers. Environmetrics 27(3):158–168

    Article  Google Scholar 

  • Di Bernardino E, Fernández-Ponce JM, Palacios-Rodríguez F, Rodríguez-Griñolo MR (2015) On multivariate extensions of the conditional value-at-risk measure. Insur Math Econ 61:1–16

    Article  Google Scholar 

  • Durante F, Salvadori G (2010) On the construction of multivariate extreme value models via copulas. Environmetrics 21(2):143–161. doi:10.1002/env.988

    Google Scholar 

  • Durante F, Sempi C (2016) Principles of copula theory. CRC, Boca Raton

    Google Scholar 

  • Favre AC, El Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40(1):W01,101. doi:10.1029/2003WR002456

    Article  Google Scholar 

  • Field C, Barros V, Stocker T, Dahe Q (eds) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation, mathematics and its applications, vol 67. Cambridge University Press, Cambridge, UK, special Report of the Intergovernmental Panel on Climate Change

  • Föllmer H, Schied A (2011) Stochastic finance. Walter de Gruyter & Co., Berlin

    Book  Google Scholar 

  • Genest C, Rivest LP (2001) On the multivariate probability integral transformation. Stat Probab Lett 53(4):391–399

    Article  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44(2):199–213

    Article  Google Scholar 

  • Girardi G, Ergün A (2013) Systemic risk measurement: multivariate GARCH estimation of CoVaR. J Bank Financ 37(8):3169–3180

    Article  Google Scholar 

  • Gräler B, van den Berg MJ, Vandenberghe S, Petroselli A, Grimaldi S, De Baets B, Verhoest NEC (2013) Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol Earth Syst Sci 17(4):1281–1296. doi:10.5194/hess-17-1281-2013

    Article  Google Scholar 

  • Hakwa B, Jäger-Ambrozewicz M, Rüdiger B (2015) Analysing systemic risk contribution using a closed formula for conditional value at risk through copula. Commun Stoch Anal 9(1):131–158

    Google Scholar 

  • Hamel AH, Heyde F (2010) Duality for set-valued measures of risk. SIAM J Financ Math 1(1):66–95

    Article  Google Scholar 

  • Hering C, Hofert M, Mai JF, Scherer M (2010) Constructing hierarchical Archimedean copulas with Lévy subordinators. J Multivar Anal 101(6):1428–1433

    Article  Google Scholar 

  • Hofert M, Kojadinovic I, Maechler M, Yan J (2015) copula: multivariate dependence with copulas. http://CRAN.R-project.org/package=copula, r package version 0.999-14

  • Jaworski P (2017) On conditional value at risk (CoVaR) for tail-dependent copulas. Depend Model 5(1):1–19

    Article  Google Scholar 

  • Joe H (2015) Dependence modeling with copulas. CRC, London

    Google Scholar 

  • Joe H, Sang P (2016) Multivariate models for dependent clusters of variables with conditional independence given aggregation variables. Comput Stat Data Anal 97:114–132

    Article  Google Scholar 

  • Jorion P (2006) Value at risk: the new benchmark for managing financial risk. McGraw-Hill, New York

    Google Scholar 

  • Kojadinovic I, Yan J (2011) A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Stat Comput 21(1):17–30. doi:10.1007/s11222-009-9142-y

    Article  Google Scholar 

  • Mainik G, Schaanning E (2014) On dependence consistency of CoVaR and some other systemic risk measures. Stat Risk Model 31(1):49–77

    Google Scholar 

  • Nappo G, Spizzichino F (2009) Kendall distributions and level sets in bivariate exchangeable survival models. Inf Sci 179(17):2878–2890

    Article  Google Scholar 

  • Okhrin O, Okhrin Y, Schmid W (2013) On the structure and estimation of hierarchical Archimedean copulas. J Econom 173(2):189–204

    Article  Google Scholar 

  • Pfaff B, McNeil A (2012) evir: extreme values in R. https://CRAN.R-project.org/package=evir, r package version 1.7-3

  • Prékopa A (2012) Multivariate value at risk and related topics. Ann Oper Res 193:49–69

    Article  Google Scholar 

  • Read LK, Vogel RM (2015) Reliability, return periods, and risk under nonstationarity. Water Resour Res 51(8):6381–6398

    Article  Google Scholar 

  • Salvadori G (2004) Bivariate return periods via 2-copulas. Stat Methodol 1(1–2):129–144

    Article  Google Scholar 

  • Salvadori G, De Michele C (2004a) Analytical calculation of storm volume statistics with Pareto-like intensity-duration marginals. Geophys Res Lett 31(GL018):767. doi:10.1029/2003GL018767

    Google Scholar 

  • Salvadori G, De Michele C (2004b) Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40(W12):511. doi:10.1029/2004WR003133

    Google Scholar 

  • Salvadori G, De Michele C (2006) Statistical characterization of temporal structure of storms. Adv Water Resour 29(6):827–842

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature. An approach using copulas, Water Science and Technology Library, vol 56. Springer, Dordrecht

    Google Scholar 

  • Salvadori G, De Michele C, Durante F (2011) On the return period and design in a multivariate framework. Hydrol Earth Syst Sci 15:3293–3305

    Article  Google Scholar 

  • Salvadori G, Tomasicchio GR, D’Alessandro F (2014) Practical guidelines for multivariate analysis and design in coastal and off-shore engineering. Coast Eng 88:1–14. doi:10.1016/j.coastaleng.2014.01.011

    Article  Google Scholar 

  • Salvadori G, Durante F, Tomasicchio GR, D’Alessandro F (2015) Practical guidelines for the multivariate assessment of the structural risk in coastal and off-shore engineering. Coast Eng 95:77–83. doi:10.1016/j.coastaleng.2014.09.007

    Article  Google Scholar 

  • Salvadori G, Durante F, De Michele C, Bernardi M, Petrella L (2016) A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. Water Resour Res 52(5):3701–3721

    Article  Google Scholar 

  • Serinaldi F (2015) Dismissing return periods!. Stoch Environ Res Risk Assess 29(4):1179–1189

    Article  Google Scholar 

  • Shiau TJ (2003) Return period of bivariate distributed extreme hydrological events. Stoch Environ Res Risk Assess 17(1):42–57

    Article  Google Scholar 

  • Sordo MA, Suárez-Llorens A, Bello AJ (2015) Comparison of conditional distributions in portfolios of dependent risks. Insur Math Econ 61:62–69

    Article  Google Scholar 

  • Wang C, Chang NB, Yeh GT (2009) Copula-based flood frequency (COFF) analysis at the confluences of river systems. Hydrol Process 23(10):1471–1486

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thanks the Reviewers for helpful comments and careful reading. Helpful discussions with C. Sempi (Università del Salento, Lecce, Italy) are also gratefully acknowledged. [FD] This work was partially supported by the Faculty of Economics and Management, Free University of Bozen-Bolzano, via the project “NEW-DEMO”. Moreover, the work has been also partially supported by INdAM-GNAMPA Project 2017 “Bounds for Risk Functionals in Dependence Models”. [PJ] The support from National Science Centre, Poland, under project 2015/17/B/HS4/00911 is acknowledged. [GS] The support of the CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce (Italy)) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Durante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardi, M., Durante, F., Jaworski, P. et al. Conditional risk based on multivariate hazard scenarios. Stoch Environ Res Risk Assess 32, 203–211 (2018). https://doi.org/10.1007/s00477-017-1425-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1425-9

Keywords

Navigation