Skip to main content
Log in

Elimination of informational redundancy in the weight of evidence method: an application to landslide susceptibility assessment

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In applications of the weight of evidence (WofE) method, the informational redundancy in similar evidential patterns causes a significant increase in the posterior probability. Consequently, to estimate the posterior probability, combinations that pass the established conditional independence (CI) tests are considered rather than the combination of the ‘best’ information layers. This study introduces two methodological approaches to extend the WofE using a correction factor that eliminates the informational redundancy that is contained in different evidential layers. The proposed approaches allow the use of associated data in the same model without having to address issues with the constraints of the CI. The basic WofE approach that is used to estimate the weights is not changed, and only the interactions of the parameter layers and the transformation of the weights into probability values are considered. The method is applied to a real dataset that is used in a landslide susceptibility analysis on Lombok Island, Indonesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdi H, Valentin D (2007) Multiple correspondence analysis. In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, pp 651–657

    Google Scholar 

  • Agterberg FP, Cheng Q (2002) Conditional independence test for weight-of-evidence modeling. Nat Resour Res 11(4):249–255

    Article  Google Scholar 

  • Agterberg FP, Bonham-Carter GF, Wright DF (1990) Statistical pattern integration for mineral exploration. In: Gaal G, Merriam DF (eds) Computer applications in resource estimation: predictions and assessment for metals and petroleum. Oxford, Pergamon, pp 1–21

    Chapter  Google Scholar 

  • ASTER GDEM Validation Team (2011) ASTER Global digital elevation model version 2—summary of validation results. METI and NASA

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Beh EJ (1997) Simple correspondence analysis of ordinal cross-classifications using orthogonal polynomials. Biom J 39:589–613

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon Press, Ottawa

    Google Scholar 

  • Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights of evidence modelling: a new approach to mapping mineral potential. Stat Appl Earth Sci 89(9):171–183

    Google Scholar 

  • Convertino M, Troccoli A, Catani F (2013) Detecting fingerprints of landslides: a MaxEnt model. J Geophys Res 118:1367–1386

    Article  Google Scholar 

  • Convertino M, Liu Y, Hwang H (2014) Optimal surveillance network design: a value of information model. Complex Adapt Syst Model 2:6. doi:10.1186/s40294-014-0006-8

    Article  Google Scholar 

  • Corsini A, Cervi F, Ronchetti F (2009) Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Appenines, Italy). Geomorphology 111:79–87

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nomomura A, Yamanaka M, Masuda T, Nishino K (2008) GIS-based weights-of-evidence modeling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ Geol 54(2):311–324

    Article  CAS  Google Scholar 

  • Gorsevski PV, Gessler P, Foltz RB (2000) Spatial prediction of landslide hazard using discriminant analysis and GIS. In: GIS in the Rockies 2000 Conference and Workshop: applications for the 21st Century, Denver, Colorado, 25–27 Sept 2000

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Adrizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299

  • He S, Pan P, Dai L, Wang H, Liu J (2012) Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Quiggan River delta, Three Gorges, China. Geomorphology 171–172:30–41

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jaervis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Kemp L, Bonham-Carter GF, Raines GL (1999) Arc-Wofe: arcview extension for weights of evidence mapping. http://gis.nrcan.gc.ca/software/arcview/wofe. Accessed 8 Oct 2011

  • Le Roux B, Rouanet H (2005) Geometric data analysis., From correspondence analysis to structured data analysisSpringer, Dordrecht. doi:10.1007/1-4020-2236-0

    Book  Google Scholar 

  • Lee S, Evangelista DG (2006) Earthquake-induced landslide-susceptibility mapping using an artificial neural network. Nat Hazards Earth Syst 6:687–695

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131

    Article  Google Scholar 

  • Lee CT, Huang CC, Lee JF, Pan KL, Lin ML, Dong JJ (2008) Statistical approach to earthquake-induced landslide susceptibility. Eng Geol 100:43–58

    Article  Google Scholar 

  • Li C, Tang H, Ge Y, Hu X, Wang L (2014) Application of back-propagation neural network on bank destruction forecasting for accumulative landslides in the three Gorges Reservoir region, China. Stoch Environ Res Risk Assess 28:1465–1477

    Article  Google Scholar 

  • Lindsay MD, Betts PG, Ailleres L (2014) Data fusion and porphyry copper prospectivety models, southeastern Arizona. Ore Geol Rev 61:120–140

    Article  Google Scholar 

  • Lusti M (2002) Data warehousing und data mining, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Mangga S, Atmawinata S, Hermanto B, Amin TC (1994) Geologi Lembar Lombok, Nusatenggara, skala 1:250,000. Pusat Penelitian dan Pengembangan Geologi

  • Martínez-Casasnovas JA, Klaasse A, Nogués J, Ramos MC (2008) Comparison between land suitability and actual crop distribution in an irrigation district of the Ebro valley (Spain). Span J Agric Res 6(4):700–713

    Article  Google Scholar 

  • Mathew J, Jha VK, Rawat GS (2007) Weights of evidence modeling for landslide hazard zonation mapping in part of Bhagirathi valley Uttarakhand. Curr Sci 92(5):628–638

    Google Scholar 

  • Merrow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • NASA (2013) NASA Land Processes Distributed Active Archive Center (LP DAAC). MxD13Q1, USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota

  • Neuhäuser B, Terhorst B (2007) Landslide Susceptibility assessment using weights-of-evidence applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86:12–24

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25:747–759

    Article  Google Scholar 

  • Rezaei Moghaddam MH, Khayyam M, Ahmadi Farajzadeh M (2007) Mapping susceptibility landslide by using the weight-of-evidence model: a case study in Merek valley. Iran J Appl Sci 7(22):3342–3355

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

  • Saaty TL, Vargas LG (1984) Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios. Math Model 5:309–324

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Tarboton DG, Bras RL, Rodriguez-Iturbe I (1991) On the extraction of channel networks from digital elevation data. Hydrol Process 5:81–100

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2015) Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1021-9

    Google Scholar 

  • Torizin J (2012) Landslide Susceptibility Assessment Tools for ArcGIS 10.0 and their Application. Proceedings of 34th IGC, Brisbane, 05–10 Aug 2012

  • Torizin J, Fuchs M, Balzer D, Kuhn D, Arifianti Y, Kusnadi (2013) Methods for generation and evaluation of landslide susceptibility maps: a case study of Lombok Island, Indonesia. Proceedings of 19th Conference on Engineering Geology, Munich, pp 253–258

  • Van Westen CJ, Rengers N (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86:404–414

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Von Mises R, Pollaczek-Geiringer H (1929) Praktische Verfahren der Gleichungsauflösung. ZAMM—Zeitschrift für Angewandte Mathematik und Mechanik 9:152–164

    Article  Google Scholar 

  • Wood J (1996) The Geomorphological characterization of Digital Elevation Models. Dissertation, Department of Geography, University of Leicester

  • Zhao S, Chai L (2015) A new assessment approach for urban ecosystem health basing on maximum information entropy method. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1024-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Torizin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torizin, J. Elimination of informational redundancy in the weight of evidence method: an application to landslide susceptibility assessment. Stoch Environ Res Risk Assess 30, 635–651 (2016). https://doi.org/10.1007/s00477-015-1077-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1077-6

Keywords

Navigation