Skip to main content
Log in

The distribution of transposable elements (TEs) in the promoter regions of moso bamboo genes and its influence on downstream genes

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Transposable elements are abundant in the promoter regions of moso bamboo genome and influence the expression of downstream genes.

Abstract

As important components of animal and plant genomes, transposable elements (TEs) can shape host genomes and regulate gene expression. In the present study, TEs distributed in the promoter regions of moso bamboo genome were systematically investigated with stringy parameters using RepeatMasker. Approximately 85.7% of the promoter regions were anchored into the TE sequences. Among TE families, three types of TEs are preferentially inserted into the promoter regions: hAT-like transposons, miniature inverted-repeat elements (MITEs), and short interspersed elements (SINEs). The TE insertion sites in promoter regions were amplified by PCR. One site (TE-20) exhibited insertion polymorphism. The expression of downstream gene PH01003704G0280 was three to five times higher with the absence of TE-20 than with the presence of it. On the basis of previous studies it was hypothesized that TEs distributed in the promoter regions of four homologs of floral pathway integrators (FPIs) might be responsible for the observed low expression level. To test the hypothesis, four promoter sequences with TE insertions and TE deletions were inserted upstream of the open reading frame of the β-glucuronidase (GUS) gene and green fluorescent protein (GFP) reporter genes. The expression level of downstream genes was higher with TE deletions than with TE insertions. These results show that the TEs are abundant in the promoter regions and influence the expression of downstream genes in moso bamboo genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barkan A, Martienssen RA (1991) Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. PNAS 88(8):3502–3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourque G (2009) Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Cell Biol 19:607–612

    CAS  Google Scholar 

  • Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhadi SR, Deshpande A, Ramakrishna W (2012) A novel non-wounding transient expression assay for cereals mediated by Agrobacterium tumefaciens. Plant Mol Biol Rep 30:36–45

    Article  CAS  Google Scholar 

  • Dhadi SR, Xu Z, Shaik R, Driscoll K, Ramakrishna W (2015) Differential regulation of genes by retrotransposons in rice promoters. Plant Mol Biol 87(6):603–613

    Article  CAS  PubMed  Google Scholar 

  • Fan CJ, Ma JM, Guo QR, Li XT, Wang H, Lu MZ (2013) Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS One 8:e56573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feschotte C, Mouches C (2000) Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 17(5):730–737

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray YH (2000) It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet 16(10):461–468

    Article  CAS  PubMed  Google Scholar 

  • Hanson MR, Köhler RH (2001) GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 52(356):529–539

    Article  CAS  PubMed  Google Scholar 

  • Hirsch CD, Springer NM (2017) Transposable element influences on gene expression in plants. Biochim Biophys Acta 1860(1):157–165

    Article  CAS  PubMed  Google Scholar 

  • Hu T, He S, Yang G, Zeng H, Wang G, Chen Z, Huang X (2011) Isolation and characterization of a rice glutathione S-transferase gene promoter regulated by herbicides and hormones. Plant Cell Rep 30:539–549

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Zhou MB, Yang P, Tang DQ (2015) Cloning and analysis of miniature inverted repeat transposable elements PhTourist1 from Phyllostachys edulis. Scientia Silvae Sinicae 51:127–134

    Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV (2003a) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19(2):68–72

    Article  CAS  PubMed  Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003b) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33(1):479–532

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Ruan X, Lou Y (2009) Genetic similarity among cultivars of Phyllostachys pubescens. Plant Syst Evol 277:67–73

    Article  Google Scholar 

  • Lin XC, Chow TY, Chen HH, Liu CC, Chou SJ, Huang BL, Kuo CI, Wen CK, Huang LC, Fang W (2010) Understanding bamboo flowering based on large-scale analysis of expressed sequence tags. Genet Mol Res 9(2):1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lonnig WE, Saedler H (2002) Chromosome rearrangements and transposable elements. Annu Rev Genet 36:389–410

    Article  CAS  PubMed  Google Scholar 

  • Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J, Shi W, Shyr C, Tan G, Worsley-Hunt R, Zhang AW, Parcy F, Lenhard B, Sandelin A, Wasserman WW (2016) JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 44(D1):D110–D115

    Article  CAS  PubMed  Google Scholar 

  • Naito K, Zhang F, Tsukiyama T (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461(7267):1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Okumoto Y, Naito K, Tanisaka T (2007) Potential roles of a transposon MITE in gene regulation. Tanpakushitsu Kakusan Koso 52(3):214–220

    CAS  PubMed  Google Scholar 

  • Palin K, Taipale J, Ukkonen E (2006) Locating potential enhancer elements by comparative genomics using the EEL software. Nat Protoc 1(1):368–374

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, Lu H, Hu T, Yao N, Liu K, Li Y, Fan D, Guo Y, Li W, Lu Y, Weng Q, Zhou C, Zhang L, Huang T, Zhao Y, Zhu C, Liu X, Yang X, Wang T, Miao K, Zhuang C, Cao X, Tang W, Liu G, Liu Y, Chen J, Liu Z, Yuan L, Liu Z, Huang X, Lu T, Fei B, Ning Z, Han B, Jiang Z (2013) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45(4):456–461

    Article  CAS  PubMed  Google Scholar 

  • Pereira V, Enard D, Eyer WA (2009) The effect of transposable element insertions on gene expression evolution in rodents. PLoS One 4(2):4321

    Article  Google Scholar 

  • Rastogi A, Gupato D (2014) GFF-Ex: a genome feature extraction package. BMC Res Notes 7:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Seberg O, Petersen G (2009) A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat Rev Genet 10(4):276

    Article  CAS  PubMed  Google Scholar 

  • Settles AM, Baron A, Barkan A, Martienssen RA (2001) Duplication and suppression of chloroplast protein translocation genes in maize. Genetics 157:349–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surendar RD, Zijun X, Rafi S (2015) Differential regulation of genes by retrotransposons in rice promoters. Plant Mol Biol 87(6):603–613

    Article  Google Scholar 

  • Tang D, Li J, Zhang S (2010) Development characterization and utilization of GenBank microsatellite markers in Phyllostachys pubescens and related species. Mol Breed 25(2):299–311

    Article  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  PubMed  Google Scholar 

  • Xia XW, Gui RY, Yang HY, Fu Y, Fang W, Zhou MB (2015) Identification of genes involved in color variation of bamboo culms by suppression subtractive hybridization. Plant Physiol Biochem 97:156–164

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Rafi S, Ramakrishna W (2011) Polymorphisms and evolutionary history of retrotransposon insertions in rice promoters. Genome 54(8):629–638

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Xia XW, Fang W, Fu Y, An MM, Zhou MB (2015) Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica. Genet Mol Res 14(4):11827–11840

    Article  CAS  PubMed  Google Scholar 

  • Yasuda K, Ito M, Sugita T (2013) Utilization of transposable element mPing as a novel genetic tool for modification of the stress response in rice. Mol Breed 32(3):505–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Peng Z, Fei B, Li L, Hu T, Gao Z, Jiang Z (2014) BambooGDB: a bamboo genome database with functional annotation and an analysis platform. Database (Oxford) 2014:bau006

    Article  Google Scholar 

  • Zhou MB, Zheng Y, Liu ZG, Xia XW, Ding-Qin Tang DQ, Fu Y, Chen M (2016) Endo-1,4-b-glucanase gene involved into the rapid elongation of Phyllostachys heterocycla var. pubescens. Trees 30:1259–1274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Grant nos. 31470615 and 31270645) and the Talents Program of Zhejiang Province Natural Science Foundation of China (Grant no. LR12C16001) supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingbing Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F. Canovas.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Zhou, Q. & Hänninen, H. The distribution of transposable elements (TEs) in the promoter regions of moso bamboo genes and its influence on downstream genes. Trees 32, 525–537 (2018). https://doi.org/10.1007/s00468-017-1650-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1650-3

Keywords

Navigation