Skip to main content

Advertisement

Log in

Association of post-transplantation anellovirus viral load with kidney transplant rejection in children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Post-transplantation immunosuppressive therapy reduces the risk of graft rejection but raises the risk of infection and malignancy. A biomarker of the level of immunosuppression can be helpful in monitoring immunosuppressive therapy. Inverse correlation between Torque teno virus (TTV) from the Anelloviridae (AV) family load and immune competence was described in previous studies. The aim of this study was to analyze the association between AV family viruses’ kinetics and the risk for graft rejection in the first year after kidney transplantation in children.

Methods

The titers of three genera (TTV, TTMDV, and TTMV) from the AV family were monitored by real-time PCR in consecutive samples from children before and after kidney transplantation.

Results

Twenty-one children who underwent kidney transplantation were enrolled. Five out of 21 patients experienced acute graft rejection within a year from transplantation. We found that in patients who experienced graft rejection, the median titers of TTV and total AV titers at 5–6 months post-transplantation were lower than in those who did not. Using a threshold determined by ROC analysis, significant differences in TTV and total AV load were found between patients who had or did not have graft rejection (p = 0.002 and 0.004, respectively). No association was found between the dominance of any AV genus titer and the likelihood of rejection.

Conclusion

This pilot study suggests that children after kidney transplantation with low TTV and total AV titers 5–6 months post-transplantation are at increased risk for graft rejection within a year after transplantation.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. NAPRTCS (2014) NAPRTCS 2014 Annual transplant report. https://naprtcs.org/system/files/2014_Annual_Transplant_Report.pdf

  2. Fishman JA (2007) Infection in solid-organ transplant recipients. N Engl J Med 357:2601–2614. https://doi.org/10.1056/NEJMra064928

    Article  CAS  PubMed  Google Scholar 

  3. Kaczorowska J, van der Hoek L (2020) Human anelloviruses: diverse, omnipresent and commensal members of the virome. FEMS Microbiol Rev 44:305–313. https://doi.org/10.1093/femsre/fuaa007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spandole S, Cimponeriu D, Berca LM, Mihaescu G (2015) Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch Virol 160:893–908. https://doi.org/10.1007/s00705-015-2363-9

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Iwasa Y, Hijikata M, Mishiro S (2000) Identification of a new human DNA virus (TTV-like mini virus, TLMV) intermediately related to TT virus and chicken anemia virus. Arch Virol 145:979–993

    Article  CAS  Google Scholar 

  6. De Vlaminck I, Khush KK, Strehl C, Kohli B, Luikart H, Neff NF, Okamoto J, Snyder TM, Cornfield DN, Nicolls MR, Weill D, Bernstein D, Valantine HA, Quake SR (2013) Temporal response of the human virome to immunosuppression and antiviral therapy. Cell 155:1178–1187. https://doi.org/10.1016/j.cell.2013.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li L, Deng X, Da Costa AC, Bruhn R, Deeks SG, Delwart E (2015) Virome analysis of antiretroviral-treated HIV patients shows no correlation between t-cell activation and anelloviruses levels. J Clin Virol 72:106–113. https://doi.org/10.1016/j.jcv.2015.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beland K, Dore-Nguyen M, Gagne MJ, Patey N, Brassard J, Alvarez F, Halac U (2014) Torque teno virus in children who underwent orthotopic liver transplantation: new insights about a common pathogen. J Infect Dis 209:247–254. https://doi.org/10.1093/infdis/jit423

    Article  CAS  PubMed  Google Scholar 

  9. Gorzer I, Jaksch P, Strassl R, Klepetko W, Puchhammer-Stockl E (2017) Association between plasma Torque teno virus level and chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant 36:366–368. https://doi.org/10.1016/j.healun.2016.10.011

    Article  PubMed  Google Scholar 

  10. Madsen CD, Eugen-Olsen J, Kirk O, Parner J, Kaae Christensen J, Brasholt MS, Ole Nielsen J, Krogsgaard K (2002) TTV viral load as a marker for immune reconstitution after initiation of HAART in HIV-infected patients. HIV Clin Trials 3:287–295. https://doi.org/10.1310/8c94-vypq-ng1h-4cnw

    Article  PubMed  Google Scholar 

  11. Shibayama T, Masuda G, Ajisawa A, Takahashi M, Nishizawa T, Tsuda F, Okamoto H (2001) Inverse relationship between the titre of TT virus DNA and the CD4 cell count in patients infected with HIV. AIDS 15:563–570

    Article  CAS  Google Scholar 

  12. Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B, Brownstein BH, Pachot A, Brooks TL, Deych E, Shannon WD, Green JM, Storch GA, Hotchkiss RS (2014) Reactivation of multiple viruses in patients with sepsis. PLoS ONE 9:e98819. https://doi.org/10.1371/journal.pone.0098819

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhong S, Yeo W, Tang MW, Lin XR, Mo F, Ho WM, Hui P, Johnson PJ (2001) Gross elevation of TT virus genome load in the peripheral blood mononuclear cells of cancer patients. Ann N Y Acad Sci 945:84–92. https://doi.org/10.1111/j.1749-6632.2001.tb03868.x

    Article  CAS  PubMed  Google Scholar 

  14. Moen EM, Sagedal S, Bjoro K, Degre M, Opstad PK, Grinde B (2003) Effect of immune modulation on TT virus (TTV) and TTV-like-mini-virus (TLMV) viremia. J Med Virol 70:177–182. https://doi.org/10.1002/jmv.10356

    Article  PubMed  Google Scholar 

  15. Shang D, Lin YH, Rigopoulou I, Chen B, Alexander GJ, Allain JP (2000) Detection of TT virus DNA in patients with liver disease and recipients of liver transplant. J Med Virol 61:455–461. https://doi.org/10.1002/1096-9071(200008)61:4%3c455::aid-jmv7%3e3.0.co;2-p

    Article  CAS  PubMed  Google Scholar 

  16. Burra P, Masier A, Boldrin C, Calistri A, Andreoli E, Senzolo M, Zorzi M, Sgarabotto D, Guido M, Cillo U, Canova D, Bendinelli M, Pistello M, Maggi F, Palu G (2008) Torque teno virus: any pathological role in liver transplanted patients? Transpl Int 21:972–979. https://doi.org/10.1111/j.1432-2277.2008.00714.x

    Article  PubMed  Google Scholar 

  17. Focosi D, Macera L, Pistello M, Maggi F (2014) Torque teno virus viremia correlates with intensity of maintenance immunosuppression in adult orthotopic liver transplant. J Infect Dis 210:667–668. https://doi.org/10.1093/infdis/jiu209

    Article  PubMed  Google Scholar 

  18. Blatter JA, Sweet SC, Conrad C, Danziger-Isakov LA, Faro A, Goldfarb SB, Hayes D, Jr., Melicoff E, Schecter M, Storch G, Visner GA, Williams NM, Wang D (2018) Anellovirus loads are associated with outcomes in pediatric lung transplantation. Pediatr Transplant 22. https://doi.org/10.1111/petr.13069

  19. Gilles R, Herling M, Holtick U, Heger E, Awerkiew S, Fish I, Holler K, Sierra S, Knops E, Kaiser R, Scheid C, Di Cristanziano V (2017) Dynamics of Torque teno virus viremia could predict risk of complications after allogeneic hematopoietic stem cell transplantation. Med Microbiol Immunol 206:355–362. https://doi.org/10.1007/s00430-017-0511-4

    Article  CAS  PubMed  Google Scholar 

  20. Frye BC, Bierbaum S, Falcone V, Kohler TC, Gasplmayr M, Hettich I, Durk T, Idzko M, Zissel G, Hengel H, Muller-Quernheim J (2019) Kinetics of Torque teno virus-DNA plasma load predict rejection in lung transplant recipients. Transplantation 103:815–822. https://doi.org/10.1097/TP.0000000000002436

    Article  CAS  PubMed  Google Scholar 

  21. Fernandez-Ruiz M, Albert E, Gimenez E, Ruiz-Merlo T, Parra P, Lopez-Medrano F, San Juan R, Polanco N, Andres A, Navarro D, Aguado JM (2019) Monitoring of alphatorquevirus DNA levels for the prediction of immunosuppression-related complications after kidney transplantation. Am J Transplant 19:1139–1149. https://doi.org/10.1111/ajt.15145

    Article  CAS  PubMed  Google Scholar 

  22. Strassl R, Schiemann M, Doberer K, Gorzer I, Puchhammer-Stockl E, Eskandary F, Kikic Z, Gualdoni GA, Vossen MG, Rasoul-Rockenschaub S, Herkner H, Bohmig GA, Bond G (2018) Quantification of Torque teno virus viremia as a prospective biomarker for infectious disease in kidney allograft recipients. J Infect Dis 218:1191–1199. https://doi.org/10.1093/infdis/jiy306

    Article  PubMed  PubMed Central  Google Scholar 

  23. Focosi D, Macera L, Boggi U, Nelli LC, Maggi F (2015) Short-term kinetics of torque teno virus viraemia after induction immunosuppression confirm T lymphocytes as the main replication-competent cells. J Gen Virol 96:115–117. https://doi.org/10.1099/vir.0.070094-0

    Article  CAS  PubMed  Google Scholar 

  24. Strassl R, Doberer K, Rasoul-Rockenschaub S, Herkner H, Gorzer I, Klager JP, Schmidt R, Haslacher H, Schiemann M, Eskandary FA, Kikic Z, Reindl-Schwaighofer R, Puchhammer-Stockl E, Bohmig GA, Bond G (2019) Torque teno virus for risk stratification of acute biopsy-proven alloreactivity in kidney transplant recipients. J Infect Dis 219:1934–1939. https://doi.org/10.1093/infdis/jiz039

    Article  PubMed  PubMed Central  Google Scholar 

  25. Masouridi-Levrat S, Pradier A, Simonetta F, Kaiser L, Chalandon Y, Roosnek E (2016) Torque teno virus in patients undergoing allogeneic hematopoietic stem cell transplantation for hematological malignancies. Bone Marrow Transplant 51:440–442. https://doi.org/10.1038/bmt.2015.262

    Article  CAS  PubMed  Google Scholar 

  26. Simonetta F, Pradier A, Masouridi-Levrat S, van Delden C, Giostra E, Morard I, Mueller N, Muellhaupt B, Valli PV, Semmo N, Seebach J, Chalandon Y, Kaiser L, Roosnek E (2017) Torque teno virus load and acute rejection after orthotopic liver transplantation. Transplantation 101:e219–e221. https://doi.org/10.1097/TP.0000000000001723

    Article  PubMed  Google Scholar 

  27. Schiemann M, Puchhammer-Stockl E, Eskandary F, Kohlbeck P, Rasoul-Rockenschaub S, Heilos A, Kozakowski N, Gorzer I, Kikic Z, Herkner H, Bohmig GA, Bond G (2017) Torque teno virus load-inverse association with antibody-mediated rejection after kidney transplantation. Transplantation 101:360–367. https://doi.org/10.1097/TP.0000000000001455

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wohlfarth P, Leiner M, Schoergenhofer C, Hopfinger G, Goerzer I, Puchhammer-Stoeckl E, Rabitsch W (2018) Torquetenovirus dynamics and immune marker properties in patients following allogeneic hematopoietic stem cell transplantation: a prospective longitudinal study. Biol Blood Marrow Transplant 24:194–199. https://doi.org/10.1016/j.bbmt.2017.09.020

    Article  PubMed  Google Scholar 

  29. Schmitz J, Kobbe G, Kondakci M, Schuler E, Magorsch M, Adams O (2020) The value of Torque teno virus (TTV) as a marker for the degree of immunosuppression in adult patients after hematopoietic stem cell transplantation (HSCT). Biol Blood Marrow Transplant 26:643–650. https://doi.org/10.1016/j.bbmt.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  30. Gorzer I, Haloschan M, Jaksch P, Klepetko W, Puchhammer-Stockl E (2014) Plasma DNA levels of Torque teno virus and immunosuppression after lung transplantation. J Heart Lung Transplant 33:320–323. https://doi.org/10.1016/j.healun.2013.12.007

    Article  PubMed  Google Scholar 

  31. Solis M, Velay A, Gantner P, Bausson J, Filipputtu A, Freitag R, Moulin B, Caillard S, Fafi-Kremer S (2019) Torquetenovirus viremia for early prediction of graft rejection after kidney transplantation. J Infect 79:56–60. https://doi.org/10.1016/j.jinf.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  32. Kincaid RP, Burke JM, Cox JC, de Villiers EM, Sullivan CS (2013) A human torque teno virus encodes a microRNA that inhibits interferon signaling. PLoS Pathog 9:e1003818. https://doi.org/10.1371/journal.ppat.1003818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McElvania TeKippe E, Wylie KM, Deych E, Sodergren E, Weinstock G, Storch GA (2012) Increased prevalence of anellovirus in pediatric patients with fever. PLoS ONE 7:e50937. https://doi.org/10.1371/journal.pone.0050937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. https://doi.org/10.1681/ASN.2008030287

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ninomiya M, Takahashi M, Nishizawa T, Shimosegawa T, Okamoto H (2008) Development of PCR assays with nested primers specific for differential detection of three human anelloviruses and early acquisition of dual or triple infection during infancy. J Clin Microbiol 46:507–514. https://doi.org/10.1128/JCM.01703-07

    Article  CAS  PubMed  Google Scholar 

  36. Gorzer I, Jaksch P, Kundi M, Seitz T, Klepetko W, Puchhammer-Stockl E (2015) Pre-transplant plasma Torque teno virus load and increase dynamics after lung transplantation. PLoS ONE 10:e0122975. https://doi.org/10.1371/journal.pone.0122975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Uhl P, Heilos A, Bond G, Meyer E, Bohm M, Puchhammer-Stockl E, Arbeiter K, Muller-Sacherer T, Csaicsich D, Aufricht C, Rusai K (2021) Torque teno viral load reflects immunosuppression in paediatric kidney-transplanted patients-a pilot study. Pediatr Nephrol 36:153–162. https://doi.org/10.1007/s00467-020-04606-3

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by internal hospital grants.

Author information

Authors and Affiliations

Authors

Contributions

YEY and MH performed viral load assays and analysis of the laboratory results. YS and YEY designed and oversaw the project, analyzed the data, and wrote the manuscript. EBS, YF, and RB contributed the patients’ samples, the clinical data and provided intellectual input and interpreted the data. OM and YFD performed biostatistical analyses. All authors revised and approved the manuscript.

Corresponding author

Correspondence to Yifat Eldar-Yedidia.

Ethics declarations

Ethics approval

This study was approved by the Helsinki committee of the Shaare-Zedek Medical Center, Jerusalem. Oral consents were obtained from the parents of all participants and were documented in the patients' records. The study was performed according to the Good Clinical Practice (GCP) guidelines.

Consent to participate

Obtained.

Consent for publication

Obtained from all authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yifat Eldar-Yedidia and Efrat Ben-Shalom contributed equally to this work

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldar-Yedidia, Y., Ben-Shalom, E., Hillel, M. et al. Association of post-transplantation anellovirus viral load with kidney transplant rejection in children. Pediatr Nephrol 37, 1905–1914 (2022). https://doi.org/10.1007/s00467-021-05336-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05336-w

Keywords

Navigation