Skip to main content
Log in

Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals

  • Review Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871–883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89–110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton–Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alipour A, Wulfinghoff S, Bayat H, Reese S (2017) Discontinuous Galerkin implementation of regularized geometrically nonlinear crystal viscoplasticity with very high strain rate sensitivity exponents (submitted)

  2. Bhattacharya A, El-Danaf E, Kalidindi S, Doherty RD (2001) Evolution of grain-scale microstructure during large strain simple compression of polycrystalline aluminum with quasi-columnar grains: Oim measurements and numerical simulations. Int J Plast 49:861–883

    Article  MATH  Google Scholar 

  3. Brisard S, Dormieux L (2010) FFT-based methods for the mechanics of composites: a general variational framework. Comput Mater Sci 49(3):663–671

    Article  Google Scholar 

  4. Brisard S, Dormieux L (2012) Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites. Comput Methods Appl Mech Eng 217(220):197–212

    Article  MathSciNet  MATH  Google Scholar 

  5. Castañeda PP (2002) Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. I—Theory. J Mech Phys Solids 50:737–757

    Article  MathSciNet  MATH  Google Scholar 

  6. Castañeda PP (2002) Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. II—Applications. J Mech Phys Solids 50:759–782

    Article  MathSciNet  MATH  Google Scholar 

  7. Castañeda PP, Suquet P (1997) Advances in applied mechanics, vol 34. Elsevier, Amsterdam

    Google Scholar 

  8. DeBotton G, Castañeda PP (1995) Variational estimates for the creep behavior of polycrystals. Proc R Soc Lond A 448:121–142

    Article  MATH  Google Scholar 

  9. Diard O, Leclerq S, Rousselier G, Cailletaud G (2005) Evaluation of finite element based analysis of 3d multicrystalline aggregates plasticity—application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int J Plast 21:691–722

    Article  MATH  Google Scholar 

  10. Dreyer W, Müller W (2000) A study of the coarsening of tin/lead solders. Int J Solids Struct 37:3841–3871

    Article  MATH  Google Scholar 

  11. Dvorak GJ (1992) Transformation field analysis of inealstic composite materials. Proc R Soc Lond Ser A Math Phys Sci 39:311–327

    Article  MATH  Google Scholar 

  12. Eisenlohr P, Diehl M, Lebensohn RA, Roters F (2013) A spectral method solution to crystal elasto viscoplasticity at finite strains. Int J Plast 46:37–53

    Article  Google Scholar 

  13. Eyre DJ, Milton GW (1999) A fast numerical scheme for computing the response of composites using grid refinement. Eur Phys J 6:41–47

    Google Scholar 

  14. Fish J, Shek K, Pandheeradi M, Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Methods Appl Mech Eng 148:53–73

    Article  MathSciNet  MATH  Google Scholar 

  15. Fritzen F, Böhlke T (2010) Three-dimensional finite element implementation of the nonuniform transformation field analysis. Int J Numer Methods Eng 84:803–829

    Article  MathSciNet  MATH  Google Scholar 

  16. Geers MGD, Kouznetsova V, Brekelmans WAM (2003) Multi-scale first-order and second-order computational homogenization of microstructures towards continua. Int J Multiscale Comput Eng 1:371–386

    Article  Google Scholar 

  17. Geers MGD, Kouznetsova V, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234:2175–2182

    Article  MATH  Google Scholar 

  18. Gélébart L, Mondon-Cancel R (2013) Non-linear extension of FFT-based methods accelerated by conjugated gradients to evaluate the mechanical behavior of composite materials. Comput Mater Sci 77:430–439

    Article  Google Scholar 

  19. Güvenc O, Bambach M, Hirt G (2014) Coupling of crystal plasticity finite element and phase field methods for the prediction of SRX kinetics after hot working. Steel Res Int 85:999–1009

    Article  Google Scholar 

  20. Hager WW, Zhang H (2006) A survey of nonlinear conjugate gradient methods. Pac J Optim 2(1):35–58

    MathSciNet  MATH  Google Scholar 

  21. Hashin Z, Shtrikman H (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342

    Article  MathSciNet  MATH  Google Scholar 

  22. Hashin Z, Shtrikman H (1963) A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 11:127–140

    Article  MathSciNet  MATH  Google Scholar 

  23. Hershey AV (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech 21:236–240

    MATH  Google Scholar 

  24. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  Google Scholar 

  25. Hill R (1965) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13:89–101

    Article  MATH  Google Scholar 

  26. Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc Lond A 348:101–127

    Article  MATH  Google Scholar 

  27. Kabel M, Böhlke T, Schneider M (2014) Efficient fixed point and Newton–Krylov solvers for FFT-based homogenization of elasticity at large deformations. Comput Mech 54:1497–1514

    Article  MathSciNet  MATH  Google Scholar 

  28. Kochmann J, Mianroodi JR, Wulfinghoff S, Svendsen B, Reese S (2016) Two-scale, FE-FFT- and phase-field based computational modeling of bulk microstructure evolution and macroscopic material behavior. Comput Methods Appl Mech Eng 305:89–110

    Article  Google Scholar 

  29. Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  MATH  Google Scholar 

  30. Lahellec N, Michel JC, Moulinec H, Suquet P (2003) Analysis of inhomogeneous materials at large strains using fast Fourier transforms. In: IUTAM symposium on computational mechanics of solid materials at large strains, solid mechanics and its applications, vol 108, pp 247–258

  31. Lebensohn RA (2001) N-site modeling of a 3d viscoplastic polycrystal using fast Fourier transform. Acta Mater 49:2723–2737

    Article  Google Scholar 

  32. Lebensohn RA, Castañeda PP, Brenner R, Castelnau O (2011) Full-field vs. homogenization methods to predict microstructure-property relations for polycrystalline materials. In: Ghosh S, Dimiduk D (eds) Computational methods for microstructure-property relationships. Springer, Boston, MA, pp 393–441. doi:10.1007/978-1-4419-0643-4_11

  33. Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plasti 32–33:59–69

    Article  Google Scholar 

  34. Lebensohn RA, Needleman A (2016) Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms. J Mech Phys Solids 97:333–351

    Article  MathSciNet  Google Scholar 

  35. Levin VA, Levitas VI, Zingerman KM (2013) Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int J Solids Struct 50:2914–2928

    Article  Google Scholar 

  36. Mianroodi JR, Shanthraj P, Svendsen B (2017) Comparison of algorithms, discretization and solution methods for classic and phase-field-based inhomogeneous elastostatics (in preparation)

  37. Michel JC, Moulinec H, Suquet P (2000) A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast. Comput Model Eng Sci 1:79–88

    MathSciNet  Google Scholar 

  38. Michel JC, Moulinec H, Suquet P (2001) A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int J Numer Methods Eng 52:139–160

    Article  Google Scholar 

  39. Michel JC, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40:6937–6955

    Article  MathSciNet  MATH  Google Scholar 

  40. Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Methods Appl Mech Eng 134:223–240

    Article  MATH  Google Scholar 

  41. Miehe C, Schotte J, Schröder J (1999) Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci 16:372–382

    Article  Google Scholar 

  42. Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418

    Article  MathSciNet  MATH  Google Scholar 

  43. Mika DP, Dawson PR (1998) Effects of grain interaction on deformation in polycrystals. Mater Sci Eng A 257:62–76

    Article  Google Scholar 

  44. Monchiet V, Bonnet G (2012) A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast. Int J Numer Methods Eng 89:1419–1436

    Article  MathSciNet  MATH  Google Scholar 

  45. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Article  Google Scholar 

  46. Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. C R Acad Sci 318:1417–1423

    MATH  Google Scholar 

  47. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructures. Comput Methods Appl Mech Eng 157(1):69–94

    Article  MathSciNet  MATH  Google Scholar 

  48. Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354

    Article  MATH  Google Scholar 

  49. Polak E, Ribière G (1969) Note sur la convergence de methodes de directions conjuguees. Revue Française D’Informatique et le Recherche Opérationelle Série Rouge 16:35–43

    MATH  Google Scholar 

  50. Prakash A, Lebensohn RA (2009) Simulations of micromechanical behavior of polycrystals: finite element versus fast Fourier transforms. Model Simul Mater Sci Eng 17:16

    Article  Google Scholar 

  51. Raabe D, Sachtleber M, Zhao Z, Roters F (2001) Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater 49:3433–3441

    Article  Google Scholar 

  52. Reese S (2002) On the equivalence of mixed element formulations and the concept of reduced integration in large deformation problems. Int J Nonlinear Sci Numer Simul 3:1–33

    Article  MathSciNet  MATH  Google Scholar 

  53. Reese S (2003) On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int J Numer Methods Eng 57(8):1095–1127

    Article  MATH  Google Scholar 

  54. Reese S, Küssner M, Reddy BD (1999) A new stabilization technique for finite elements in finite elasticity. Int J Numer Methods Eng 44:1617–1652

    Article  MATH  Google Scholar 

  55. Reuss A (1929) Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J Appl Math Mech 9:49–58

    MATH  Google Scholar 

  56. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview on constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite element modeling: theory, experiments, applications. Acta Mater 58:1152–1211

    Article  Google Scholar 

  57. Sachs G (1928) Zur Ableitung einer Fliessbedingung. Z VDI 72:734–736

    Google Scholar 

  58. Schröder J (2000) Homogenisierungsmethoden der nichtlinearen kontinuumsmechanik unter beachtung von instabilitten. habilitation, Universität Stuttgart

  59. Schröder J (2014) A numerical two-scale homogenization scheme: the FE\(^2\)-method. CISM Int Centre Mech Sci 550:1–64

    Article  MATH  Google Scholar 

  60. Schwarze M, Reese S (2011) A reduced integration solid shell finite element based on the eas and ans concept—large deformation problems. Int J Numer Methods Eng 85:289–329

    Article  MathSciNet  MATH  Google Scholar 

  61. Shanthraj P, Eisenlohr P, Diehl M, Roters F (2015) Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Int J Plast 66:31–45

    Article  Google Scholar 

  62. Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155:181–192

    Article  MATH  Google Scholar 

  63. Spahn J, Andrae H, Kabel M, Müller R (2014) A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Comput Methods Appl Mech Eng 268:871–883

    Article  MathSciNet  MATH  Google Scholar 

  64. Talbot DRS, Willis JR (1985) Variational principles for inhomogeneous nonlinear media. Int J Appl Math 35:39–54

    MathSciNet  MATH  Google Scholar 

  65. Taylor GI (1938) Plastic strains in metals. J Inst Met 62:307–324

    Google Scholar 

  66. Vidyasagar A, Tan WL, Kochmann DM (2017) Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods. J Mech Phys Solids 106:133–151

    Article  MathSciNet  Google Scholar 

  67. Vinogradov V, Milton GW (2008) An accelerated FFT algorithm for thermoelastic and non linear composites. Int J Numer Methods Eng 76:1678–1695

    Article  MathSciNet  MATH  Google Scholar 

  68. Willot F (2014) Fourier-based schemes for computing the mechanical response of composites with accurate local fields. C R Acad Sci Mec 343(3):232–245

    Article  Google Scholar 

  69. Wulfinghoff S (2017) A generalized cohesive zone model and a grain boundary yield criterion for gradient plasticity derived from surface- and interface-related arguments. Int J Plast 92:57–78

    Article  Google Scholar 

  70. Wulfinghoff S, Bayerschen E, Böhlke T (2013) A gradient plasticity grain boundary yield theory. Int J Plast 51:33–46

    Article  Google Scholar 

  71. Wulfinghoff S, Böhlke T (2013) Equivalent plastic strain gradient crystal plasticity-enhanced power law subroutine. GAMM-Mitteilungen 36(2):134–148

    Article  MathSciNet  MATH  Google Scholar 

  72. Wulfinghoff S, Reese S (2016) Efficient computational homogenization of simple elasto-plastic microstructures using a shear band approach. Comput Methods Appl Mech Eng 298:350–372

    Article  Google Scholar 

  73. Zeman J, Vodrejc J, Novak J, Marek I (2010) Accelerating a FFT-based solver for numerical homogenization of a periodic media by conjugate gradients. J Comput Phys 229(21):8065–8071

    Article  MathSciNet  MATH  Google Scholar 

  74. Ziemann M, Chen Y, Kraft O, Bayerschen E, Wulfinghoff S, Kirchlechner C, Tamur N, Bhlke T, Walter M, Gruber PA (2015) Deformation patterns in cross-sections of twisted bamboo-structured Au microwires. Acta Mater 97:216–222

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dennis Kochmann for helpful discussions on many algorithmic aspects of this work. Financial support of Subprojects M03 and C02 of the Transregional Collaborative Research Center SFB/TRR 136 by the German Science Foundation (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Kochmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochmann, J., Wulfinghoff, S., Ehle, L. et al. Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals. Comput Mech 61, 751–764 (2018). https://doi.org/10.1007/s00466-017-1476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1476-2

Keywords

Navigation