Advertisement

Surgical Endoscopy

, Volume 33, Issue 1, pp 216–224 | Cite as

Intraocular pressure increases after complex simulated surgical procedures in residents: an experimental study

  • Jesús Vera
  • Carolina Diaz-PiedraEmail author
  • Raimundo Jiménez
  • Jose M. Sanchez-Carrion
  • Leandro L. Di Stasi
Article

Abstract

Background

Surgeons’ overload is one of the main causes of medical errors that might compromise patient safety. Due to the drawbacks of current options to monitor surgeons’ load, new, sensitive, and objective indices of task (over)load need to be considered and tested. In non-health-care scenarios, intraocular pressure (IOP) has been proved to be an unbiased physiological index, sensitive to task complexity (one of the main variables related to overload), and time on task. In the present study, we assessed the effects of demanding and complex simulated surgical procedures on surgical and medical residents’ IOP.

Methods

Thirty-four surgical and medical residents and healthcare professionals took part in this study (the experimental group, N = 17, and the control group, N = 17, were matched for sex and age). The experimental group performed two simulated bronchoscopy procedures that differ in their levels of complexity. The control group mimicked the same hand-eye movements and posture of the experimental group to help control for the potential effects of time on task and re-measurement on IOP. We measured IOP before and after each procedure, surgical performance during procedures, and perceived task complexity.

Results

IOP increased as consequence of performing the most complex procedure only in the experimental group. Consistently, residents performed worse and reported higher perceived task complexity for the more complex procedure.

Conclusions

Our data show, for the first time, that IOP is sensitive to residents’ task load, and it could be used as a new index to easily and rapidly assess task (over)load in healthcare scenarios. An arousal-based explanation is given to describe IOP variations due to task complexity.

Graphical Abstract

Keywords

Cognitive load Mental workload Patient safety Neuroergonomics Ocular biomarkers 

Notes

Acknowledgements

Research by LLDS was supported by the BBVA Foundation, Madrid, Spain (Grant No. 2015-2) and is currently supported by the Ramón y Cajal fellowship program (RYC-2015-17483). We thank IAVANTE staff (Andalusian Public Foundation for Progress and Health) for their help during data collection. We thank Dr. G. A. Koulieris (Inria, Université Côte d’Azur, France) for proofreading the paper.

Funding

This study was funded by the Campus of International Excellence (BioTic Granada) Research Programme (Research Project V7-2015 to CDP). The funding source had no role in the design or conduct of this study.

Compliance with ethical standards

Disclosures

Drs. Vera, Diaz-Piedra, Jiménez, Sanchez-Carrion, and Di Stasi have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Pham JC, Aswani MS, Rosen M, Lee H, Huddle M, Weeks K, Pronovost PJ (2012) Reducing medical errors and adverse events. Annu Rev Med 63:447–463.  https://doi.org/10.1146/annurev-med-061410-121352 CrossRefGoogle Scholar
  2. 2.
    Khuri SF, Henderson WG, Daley J, Jonasson O, Jones RS, Campbell DA, Fink AS, Mentzer RM, Steeger JE (2007) The patient safety in surgery study: background, study design, and patient populations. J Am Coll Surg 204:1089–1102.  https://doi.org/10.1016/j.jamcollsurg.2007.03.028 CrossRefGoogle Scholar
  3. 3.
    Di Stasi LL, Diaz-Piedra C, Rieiro H, Sánchez Carrión JM, Martin Berrido M, Olivares G, Catena A (2016) Gaze entropy reflects surgical task load. Surg Endosc 30:5034–5043.  https://doi.org/10.1007/s00464-016-4851-8 CrossRefGoogle Scholar
  4. 4.
    Di Stasi LL, Diaz-Piedra C, Ruiz-Rabelo JF, Rieiro H, Sanchez Carrion JM, Catena A (2017) Quantifying the cognitive cost of laparo-endoscopic single-site surgeries: gaze-based indices. Appl Ergon 65:168–174CrossRefGoogle Scholar
  5. 5.
    Galy E, Cariou M, Mélan C (2012) What is the relationship between mental workload factors and cognitive load types? Int J Psychophysiol 83:269–275.  https://doi.org/10.1016/j.ijpsycho.2011.09.023 CrossRefGoogle Scholar
  6. 6.
    Zheng B, Tien G, Atkins SM, Swindells C, Tanin H, Meneghetti A, Qayumi KA, Neely O, Panton M (2011) Surgeon’s vigilance in the operating room. Am J Surg 201:667–671.  https://doi.org/10.1016/j.amjsurg.2011.01.016 CrossRefGoogle Scholar
  7. 7.
    Rubio S, Díaz E, Martín J, Puente JM (2004) Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl Psychol 53:61–86.  https://doi.org/10.1111/j.1464-0597.2004.00161.x CrossRefGoogle Scholar
  8. 8.
    Ruiz-Rabelo JF, Navarro-Rodriguez E, Di-Stasi LL, Diaz-Jimenez N, Cabrera-Bermon J, Diaz-Iglesias C, Gomez-Alvarez M, Briceño-Delgado J (2015) Validation of the NASA-TLX score in ongoing assessment of mental workload during a laparoscopic learning curve in bariatric surgery. Obes Surg 25:2451–2456.  https://doi.org/10.1007/s11695-015-1922-1 CrossRefGoogle Scholar
  9. 9.
    Podsakoff PM, MacKenzie SB, Lee JY, Podsakoff NP (2003) Common method biases in behavioural research: a critical review of the literature and recommended remedies. J Appl Psychol 88:879–903CrossRefGoogle Scholar
  10. 10.
    Di Stasi LL, McCamy MB, Macknik SL, Mankin JA, Hooft N, Catena A, Martinez-Conde S (2014) Saccadic eye movement metrics reflect surgical residents’ fatigue. Ann Surg 259:824–829.  https://doi.org/10.1097/SLA.0000000000000260 CrossRefGoogle Scholar
  11. 11.
    Di Stasi LL, Antolí A, Cañas JJ (2011) Main sequence: an index for detecting mental workload variation in complex tasks. Appl Ergon 42:807–813.  https://doi.org/10.1016/j.apergo.2011.01.003 CrossRefGoogle Scholar
  12. 12.
    Diaz-Piedra C, Sanchez-Carrion JM, Rieiro H, Di Stasi LL (2017) Gaze-based technology as a tool for surgical skills assessment and training in urology. Urology 107:26–30.  https://doi.org/10.1016/j.urology.2017.06.030 CrossRefGoogle Scholar
  13. 13.
    Zheng B, Jiang X, Tien G, Meneghetti A, Panton ONM, Atkins MS (2012) Workload assessment of surgeons: correlation between NASA TLX and blinks. Surg Endosc 26:2746–2750.  https://doi.org/10.1007/s00464-012-2268-6 CrossRefGoogle Scholar
  14. 14.
    Zheng B, Jiang X, Atkins MS (2015) Detection of changes in surgical difficulty: evidence from pupil responses. Surg Innov 22:1–7.  https://doi.org/10.1177/1553350615573582 CrossRefGoogle Scholar
  15. 15.
    Schulz CM, Schneider E, Fritz L, Vockeroth J, Hapfelmeier A, Wasmaier M, Kochs EF, Schneider G (2011) Eye tracking for assessment of workload: a pilot study in an anaesthesia simulator environment. Br J Anaesth 106:44–50.  https://doi.org/10.1093/bja/aeq307 CrossRefGoogle Scholar
  16. 16.
    Gherghel D, Hosking SL, Orgül S (2004) Autonomic nervous system, circadian rhythms, and primary open-angle glaucoma. Surv Ophthalmol 49:491–508.  https://doi.org/10.1016/j.survophthal.2004.06.003 CrossRefGoogle Scholar
  17. 17.
    Wang C-A, Munoz DP (2015) A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Curr Opin Neurobiol 33:134–140.  https://doi.org/10.1016/j.conb.2015.03.018 CrossRefGoogle Scholar
  18. 18.
    Vera J, Diaz-Piedra C, Jiménez R, Morales JM, Catena A, Cardenas D, Di Stasi LL (2016) Driving time modulates accommodative response and intraocular pressure. Physiol Behav.  https://doi.org/10.1016/j.physbeh.2016.05.043 Google Scholar
  19. 19.
    Vera J, Jiménez R, García JA, Cárdenas D (2017) Intraocular pressure is sensitive to cumulative and instantaneous mental workload. Appl Ergon 60:313–319.  https://doi.org/10.1016/j.apergo.2016.12.011 CrossRefGoogle Scholar
  20. 20.
    Vera J, García-Ramos A, Jiménez R, Cárdenas D (2017) The acute effect of strength exercises at different intensities on intraocular pressure. Graefe’s Arch Clin Exp Ophthalmol 255:2211–2217.  https://doi.org/10.1007/s00417-017-3735-5 CrossRefGoogle Scholar
  21. 21.
    Brody S, Erb C, Veit R, Rau H (1999) Intraocular pressure changes: the influence of psychological stress and the Valsalva maneuver. Biol Psychol 51:43–57.  https://doi.org/10.1016/S0301-0511(99)00012-5 CrossRefGoogle Scholar
  22. 22.
    Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191.  https://doi.org/10.3758/BF03193146 CrossRefGoogle Scholar
  23. 23.
    Chakraborty R, Read SA, Collins MJ (2011) Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Investig Ophthalmol Vis Sci 52:5121–5129.  https://doi.org/10.1167/iovs.11-7364 CrossRefGoogle Scholar
  24. 24.
    Bakke EF, Hisdal J, Semb SO (2009) Intraocular pressure increases in parallel with systemic blood pressure during isometric exercise. Investig Ophthalmol Vis Sci 50:760–764.  https://doi.org/10.1167/iovs.08-2508 CrossRefGoogle Scholar
  25. 25.
    Takenaka J, Kunihara E, Rimayanti U, Tanaka J, Kaneko M, Kiuchi Y (2015) Intraocular pressure readings obtained through soft contact lenses using four types of tonometer. Clin Ophthalmol 9:1875–1881CrossRefGoogle Scholar
  26. 26.
    Hoddes E, Zarcone V, Smythe H, Phillips R, Dement WC (1973) Quantification of sleepiness: a new approach. Psychophysiology 10:431–436CrossRefGoogle Scholar
  27. 27.
    Morales JM, Díaz-Piedra C, Rieiro H, Roca-González J, Romero S, Catena A, Fuentes LJ, Di Stasi LL (2017) Monitoring driver fatigue using a single-channel electroencephalographic device: a validation study by gaze-based, driving performance, and subjective data. Accid Anal Prev 109:62–69.  https://doi.org/10.1016/j.aap.2017.09.025 CrossRefGoogle Scholar
  28. 28.
    Prata TS, De Moraes CG, Kanadani FN, Ritch R, Paranhos A (2010) Posture-induced intraocular pressure changes: considerations regarding body position in glaucoma patients. Surv Ophthalmol 55:445–453.  https://doi.org/10.1016/j.survophthal.2009.12.002 CrossRefGoogle Scholar
  29. 29.
    Mélan C, Cascino N (2014) A multidisciplinary approach of workload assessment in real-job situations: Investigation in the field of aerospace activities. Front Psychol 5:1–13.  https://doi.org/10.3389/fpsyg.2014.00964 Google Scholar
  30. 30.
    Ost D, De Rosiers A, Britt EJ, Fein AM, Lesser ML, Mehta AC (2001) Assessment of a bronchoscopy simulator. Am J Respir Crit Care Med 164:2248–2255CrossRefGoogle Scholar
  31. 31.
    Goldmann K, Steinfeldt T (2006) Acquisition of basic fiberoptic intubation skills with a virtual reality airway simulator. J Clin Anesth 18:173–178.  https://doi.org/10.1016/j.jclinane.2005.08.021 CrossRefGoogle Scholar
  32. 32.
    Nassar M, Rumsey K, Wilson R, Parikh K, Heasly B, Gold J (2013) Rational regulation of learning dynamics by pupil–linked arousal systems. Nat Neurosci 15:1040–1046.  https://doi.org/10.1038/nn.3130.Rational CrossRefGoogle Scholar
  33. 33.
    Apfelbaum JL, Hagberg CA, Caplan RA, Blitt CD, Connis RT, Nickinovich DG, Benumof JL, Berry FA, Bode RH, Cheney FW (2013) Practice guidelines for management of the difficult airwayan updated report by the American Society of Anesthesiologists Task Force on management of the difficult airway. J Am Soc Anesthesiol 118:251–270CrossRefGoogle Scholar
  34. 34.
    Manski CF (2013) Diagnostic testing and treatment under ambiguity: using decision analysis to inform clinical practice. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1221405110/-/DCSupplemental Google Scholar
  35. 35.
    Davies LN, Bartlett H, Mallen EAH, Wolffsohn JS (2006) Clinical evaluation of rebound tonometer. Acta Ophthalmol Scand 84:206–209.  https://doi.org/10.1111/j.1600-0420.2005.00610.x CrossRefGoogle Scholar
  36. 36.
    Rüfer F, Schiller J, Klettner A, Lanzl I, Roider J, Weisser B (2014) Comparison of the influence of aerobic and resistance exercise of the upper and lower limb on intraocular pressure. Acta Ophthalmol 92:249–252.  https://doi.org/10.1111/aos.12051 CrossRefGoogle Scholar
  37. 37.
    Armstrong R (2013) Statistical guidelines for the analysis of data obtained from one or both eyes. Ophthalmic Physiol Opt 33:7–14.  https://doi.org/10.1111/opo.12009 CrossRefGoogle Scholar
  38. 38.
    Hoddes E, Zarcone V, Dement W (1972) Development and use of Stanford Sleepiness scale (SSS). Psychophysiology 9:150Google Scholar
  39. 39.
    Hart SG, Staveland LE (1988) Development of NASA-TLX (task load index): Results of empirical and theorical research. In: Hum. Ment. Workload. pp 139–183Google Scholar
  40. 40.
    Hart SG (2006) Nasa-task load index (NASA-TLX); 20 years later. Proc Hum Factors Ergon Soc Annu Meet 50:904–908.  https://doi.org/10.1177/154193120605000909 CrossRefGoogle Scholar
  41. 41.
    Colt HG, Crawford SW, Galbraith O (2001) Virtual reality bronchoscopy simulation. Chest 120:1333–1339.  https://doi.org/10.1378/chest.120.4.1333 CrossRefGoogle Scholar
  42. 42.
    Davoudi M, Colt HG (2009) Bronchoscopy simulation: a brief review. Adv Heal Sci Educ 14:287–296.  https://doi.org/10.1007/s10459-007-9095-x CrossRefGoogle Scholar
  43. 43.
    Jiménez R, Vera J (2018) Effect of examination stress on intraocular pressure in university students. Appl Ergon 67:252–258.  https://doi.org/10.1016/j.apergo.2017.10.010 CrossRefGoogle Scholar
  44. 44.
    Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation in the kitten. J Comp Neurl Psychol 5:330–336.  https://doi.org/10.1037/h0073415 Google Scholar
  45. 45.
    Di Stasi LL, Catena A, Cañas JJ, Macknik SL, Martinez-Conde S (2013) Saccadic velocity as an arousal index in naturalistic tasks. Neurosci Biobehav Rev 37:968–975.  https://doi.org/10.1016/j.neubiorev.2013.03.011 CrossRefGoogle Scholar
  46. 46.
    Siegenthaler E, Costela FM, Mccamy MB, Di Stasi LL, Otero-Millan J, Sonderegger A, Groner R, Macknik S, Martinez-Conde S (2014) Task difficulty in mental arithmetic affects microsaccadic rates and magnitudes. Eur J Neurosci 39:287–294.  https://doi.org/10.1111/ejn.12395 CrossRefGoogle Scholar
  47. 47.
    Goldwater B (1972) Psychological significance of pupillary movements. Psychol Bull 77:340–355CrossRefGoogle Scholar
  48. 48.
    Mansouri K, Weinreb RN, Liu JHK (2015) Efficacy of a contact lens sensor for monitoring 24-H intraocular pressure related patterns. PLoS ONE 10:1–14.  https://doi.org/10.1371/journal.pone.0125530 Google Scholar
  49. 49.
    De Smedt S, Mermoud A, Schnyder C (2012) 24-hour intraocular pressure fluctuation monitoring using an ocular telemetry sensor. J Glaucoma 21:539–544.  https://doi.org/10.1097/IJG.0b013e31821dac43 CrossRefGoogle Scholar
  50. 50.
    Jackson ML, Kennedy GA, Clarke C, Gullo M, Swann P, Downey LA, Hayley AC, Pierce RJ, Howard ME (2016) The utility of automated measures of ocular metrics for detecting driver drowsiness during extended wakefulness. Accid Anal Prev 87:127–133.  https://doi.org/10.1016/j.aap.2015.11.033 CrossRefGoogle Scholar
  51. 51.
    Hunt AP, Feigl B, Stewart IB (2012) The intraocular pressure response to dehydration: a pilot study. Eur J Appl Physiol 112:1963–1966.  https://doi.org/10.1007/s00421-011-2143-5 CrossRefGoogle Scholar
  52. 52.
    Li M, Wang M, Guo W, Wang J, Sun X (2011) The effect of caffeine on intraocular pressure: a systematic review and meta-analysis. Graefe’s Arch Clin Exp Ophthalmol 249:435–442.  https://doi.org/10.1007/s00417-010-1455-1 CrossRefGoogle Scholar
  53. 53.
    Gaba DM, Howard SK (2002) Patient safety: fatigue among clinicians and the safety of patients. N Engl J Med 347:1249–1255.  https://doi.org/10.1056/NEJMsa020846 CrossRefGoogle Scholar
  54. 54.
    Barger LK, Ayas NT, Cade BE, Cronin JW, Rosner B, Speizer FE, Czeisler CA (2006) Impact of extended-duration shifts on medical errors, adverse events, and attentional failures. PLoS Med 3:2440–2448.  https://doi.org/10.1371/journal.pmed.0030487 CrossRefGoogle Scholar
  55. 55.
    Stefanidis D, Korndorffer JR, Black FW, Dunne JB, Sierra R, Touchard CL, Rice DA, Markert RJ, Kastl PR, Scott DJ (2006) Psychomotor testing predicts rate of skill acquisition for proficiency-based laparoscopic skills training. Surgery 140:252–262.  https://doi.org/10.1016/j.surg.2006.04.002 CrossRefGoogle Scholar
  56. 56.
    Harris CJ, Herbert M, Steele RJC (1994) Psychomotor skills of surgical trainees compared with those of different medical specialists. Br J Surg 81:382–383.  https://doi.org/10.1002/bjs.1800810319 CrossRefGoogle Scholar
  57. 57.
    Yamaguchi S, Konishi K, Yasunaga T, Yoshida D, Kinjo N, Kobayashi K, Ieiri S, Okazaki K, Nakashima H, Tanoue K, Maehara Y, Hashizume M (2007) Construct validity for eye-hand coordination skill on a virtual reality laparoscopic surgical simulator. Surg Endosc Other Interv Tech 21:2253–2257.  https://doi.org/10.1007/s00464-007-9362-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Optics, Faculty of ScienceUniversity of GranadaGranadaSpain
  2. 2.Mixed University Sport and Health Institute (iMUDS)University of GranadaGranadaSpain
  3. 3.Mind, Brain, and Behavior Research Center – CIMCYCUniversity of GranadaGranadaSpain
  4. 4.College of Nursing and Health InnovationArizona State UniversityPhoenixUSA
  5. 5.IAVANTE, Line of Activity of the Andalusian Public Foundation for Progress and Health, Ministry of Equality, Health and Social Policy of the Regional Government of AndalusiaGranadaSpain
  6. 6.Joint Center University of Granada - Spanish Army Training and Doctrine CommandGranadaSpain

Personalised recommendations