Advertisement

Intestinal histopathological changes in a porcine model of pneumoperitoneum-induced intra-abdominal hypertension

  • Ester Párraga Ros
  • Laura Correa-Martín
  • Francisco M. Sánchez-Margallo
  • Irma Eugenia Candanosa-Aranda
  • Manu L. N. G. Malbrain
  • Robert Wise
  • Rafael Latorre
  • Octavio López Albors
  • Gregorio Castellanos
Article

Abstract

Background

Low splanchnic perfusion is an immediate effect of pneumoperitoneum-induced intra-abdominal hypertension (IAH). Anatomical structure results in the intestinal mucosa being the area most sensitive to hypoperfusion. The relationship between intestinal injury and clinical parameters of tissue perfusion [abdominal perfusion pressure (APP), gastric intramucosal pH (pHi) and lactic acid (Lc)] has not been previously studied. This study aimed to monitorize intestinal pathogenesis through sequential ileal biopsies and to measure APP, pHi, and Lc levels at different pneumoperitoneum-induced intra-abdominal pressures (20, 30, and 40 mmHg) to evaluate the potential relationships between them.

Materials and methods

Fifty pigs were divided into four groups; a control group (C) and three experimental groups with different pneumoperitoneum-induced levels [20 mmHg (G20), 30 mmHg (G30), and 40 mmHg (G40)], that were maintained for 3 and 5 h. APP, pHi, and Lc were measured and ileal biopsies taken laparoscopically every 30 min. The mucosal damage was graded using the standardized Park’s Score and animals were classified as injured (I+) or uninjured (I−).

Results

Different histopathological lesions were observed in groups G20, G30, and G40 but no damage observed in group C. A 33.3% of animals in G20 and G30 were I+ after 3 h, while 93.3% were injured in G40. After 5 h, histopathological lesions were no longer seen in some animals in G20 and only 10% were I+. Conversely, in G30 I+ pigs increased to 80% while those in G40 remained at 93.3% I+. The I+ animals had significantly lower APP and pHi than those I−. Lc was the clinical parameter that showed the earliest differences, with significantly higher figures in I+ animals.

Conclusions

The evolution of intestinal injuries from pneumoperitoneum-induced IAH depends on the degree of IAP. These damages may be associated with decreases in APP and pHi, and increases in Lc.

Keywords

Intestinal injury Histopathological changes Porcine model Intra-abdominal hypertension Pneumoperitoneum Abdominal compartment syndrome 

Notes

Acknowledgements

CCMIJU staff of Cáceres (Spain) and department of Veterinary Anatomy and Embryology at the University of Murcia (Spain) for their assistance in conducting this research.

Funding

This work was supported by one grant from Extremadura Regional Government through the Plan Regional de Investigación de Extremadura (PRI09A161 to Minimally Invasive Surgery Center Jesús Usón). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Disclosures

M.L.N.G. Malbrain is a member of the medical advisory board of Pulsion Medical Systems. Drs. E. Párraga, L. Correa-Martín, F.M. Sánchez-Margallo, I.E. Candanosa, R. Wise, R. Latorre, O. López Albors, and G. Castellanos have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Keulenaer B et al (2013) Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med 39(7):1190–1206CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Holodinsky JK, Roberts DJ, Ball CG, Blaser AR, Starkopf J, Zygun DA et al (2013) Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: a systematic review and meta-analysis. Crit Care 17(5):R249CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Malbrain M (2009) Abdominal compartment syndrome. F1000 Med Rep 1Google Scholar
  4. 4.
    Deenichin GP (2008) Abdominal compartment syndrome. Surg Today 38(1):5–19CrossRefPubMedGoogle Scholar
  5. 5.
    de Laet IE, Malbrain M (2007) Current insights in intra-abdominal hypertension and abdominal compartment syndrome. Med Intensiva 31(2):88–99CrossRefPubMedGoogle Scholar
  6. 6.
    Cheatham ML, Malbrain ML (2007) Cardiovascular implications of abdominal compartment syndrome. Acta Clin Belg Suppl (1):98–112Google Scholar
  7. 7.
    Hatipoglu S, Akbulut S, Hatipoglu F, Abdullayev R (2014) Effect of laparoscopic abdominal surgery on splanchnic circulation: historical developments. World J Gastroenterol 20(48):18165–18176CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Diebel LN, Wilson RF, Dulchavsky SA, Saxe J (1992) Effect of increased intra-abdominal pressure on hepatic arterial, portal venous, and hepatic microcirculatory blood flow. J Trauma 33(2):279–282 (discussion 82–83)CrossRefPubMedGoogle Scholar
  9. 9.
    Skoog P, Hörer T, Nilsson KF, Agren G, Norgren L, Jansson K (2015) Intra-abdominal hypertension–an experimental study of early effects on intra-abdominal metabolism. Ann Vasc Surg 29(1):128–137CrossRefPubMedGoogle Scholar
  10. 10.
    Diebel LN, Dulchavsky SA, Wilson RF (1992) Effect of increased intra-abdominal pressure on mesenteric arterial and intestinal mucosal blood flow. J Trauma 33(1):45–48 (discussion 8–9)CrossRefPubMedGoogle Scholar
  11. 11.
    Demyttenaere S, Feldman LS, Fried GM (2007) Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc 21(2):152–160CrossRefPubMedGoogle Scholar
  12. 12.
    Narváez-Sánchez R, Chuaire L, Sánchez M, Bonilla J (2004) Circulación intestinal: Su organización, control y papel en el paciente crítico. Colomb Med 35(4):231–244Google Scholar
  13. 13.
    Malbrain ML, Cheatham ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J et al (2006) Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intensive Care Med 32(11):1722–1732CrossRefPubMedGoogle Scholar
  14. 14.
    Vollmar B, Menger MD (2011) Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences. Langenbecks Arch Surg 396(1):13–29CrossRefPubMedGoogle Scholar
  15. 15.
    Takala J (1997) Determinants of splanchnic blood flow. Br J Anaesth 77:50–58CrossRefGoogle Scholar
  16. 16.
    Sánchez-Miralles A, Castellanos G, Badenes R, Conejero R (2013) Abdominal compartment syndrome and acute intestinal distress syndrome. Med Intensiva 37(2):99–109CrossRefPubMedGoogle Scholar
  17. 17.
    Gong G, Wang P, Ding W, Zhao Y, Li J (2009) Microscopic and ultrastructural changes of the intestine in abdominal compartment syndrome. J Invest Surg 22(5):362–367CrossRefPubMedGoogle Scholar
  18. 18.
    Liu D, Zhang HG, Chang MT, Li Y, Zhang LY (2015) Melanocortin-4 receptor agonists alleviate intestinal dysfunction in secondary intra-abdominal hypertension rat model. J Surg Res 195(1):263–270CrossRefPubMedGoogle Scholar
  19. 19.
    Unsal MA, Imamoglu M, Kadioglu M, Aydin S, Ulku C, Kesim M et al (2006) The acute alterations in biochemistry, morphology, and contractility of rat-isolated terminal ileum via increased intra-abdominal pressure. Pharmacol Res 53(2):135–141CrossRefPubMedGoogle Scholar
  20. 20.
    Correa-Martín L, Castellanos G, García-Lindo M, Díaz-Güemes I, Sánchez-Margallo FM (2013) Tonometry as a predictor of inadequate splanchnic perfusion in an intra-abdominal hypertension animal model. J Surg Res 184(2):1028–1034CrossRefPubMedGoogle Scholar
  21. 21.
    Ke L, Tong ZH, Ni HB, Ding WW, Sun JK, Li WQ et al (2012) The effect of intra-abdominal hypertension incorporating severe acute pancreatitis in a porcine model. PLoS ONE 7(3):e33125CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Toens C, Schachtrupp A, Hoer J, Junge K, Klosterhalfen B, Schumpelick V (2002) A porcine model of the abdominal compartment syndrome. Shock 18(4):316–321CrossRefPubMedGoogle Scholar
  23. 23.
    Kaussen T, Srinivasan PK, Afify M, Herweg C, Tolba R, Conze J et al (2012) Influence of two different levels of intra-abdominal hypertension on bacterial translocation in a porcine model. Ann Intensive Care 2(Suppl 1):S17PubMedPubMedCentralGoogle Scholar
  24. 24.
    Schachtrupp A, Toens C, Hoer J, Klosterhalfen B, Lawong AG, Schumpelick V (2002) A 24-h pneumoperitoneum leads to multiple organ impairment in a porcine model. J Surg Res 106(1):37–45CrossRefPubMedGoogle Scholar
  25. 25.
    Elatroush H, Abed N, Metwaly A, Afify M, Hussien M (2015) The effect of the abdominal perfusion pressure on visceral circulation in critically ill patients with multiorgan dysfunction. Egypt J Crit Care Med 3(2–3):63–67CrossRefGoogle Scholar
  26. 26.
    Cheatham ML, White MW, Sagraves SG, Johnson JL, Block EF (2000) Abdominal perfusion pressure: a superior parameter in the assessment of intra-abdominal hypertension. J Trauma 49(4):621–626 (discussion 6–7)CrossRefPubMedGoogle Scholar
  27. 27.
    Malbrain M (2002) Abdominal perfusion pressure as a prognostic marker in intra-abdominal hypertension. Springer, BerlinGoogle Scholar
  28. 28.
    Sugrue M, Jones F, Lee A, Buist MD, Deane S, Bauman A et al (1996) Intraabdominal pressure and gastric intramucosal pH: is there an association? World J Surg 20(8):988–991CrossRefPubMedGoogle Scholar
  29. 29.
    Mäkinen MJ, Klemola UM, Yli-Hankala A (2000) Gastric air tonometry during laparoscopic cholecystectomy: a comparison of two PaCO2 levels. Can J Anesth 48:121–128CrossRefGoogle Scholar
  30. 30.
    Duzgun AP, Gulgez B, Ozmutlu A, Ertorul D, Bugdayci G, Akyurek N et al (2006) The relationship between intestinal hypoperfusion and serum d-lactate levels during experimental intra-abdominal hypertension. Dig Dis Sci 51(12):2400–2403CrossRefPubMedGoogle Scholar
  31. 31.
    Nielsen C, Kirkegård J, Erlandsen EJ, Lindholt JS, Mortensen FV (2015) D-lactate is a valid biomarker of intestinal ischemia induced by abdominal compartment syndrome. J Surg Res 194(2):400–404CrossRefPubMedGoogle Scholar
  32. 32.
    Malbrain ML, Viaene D, Kortgen A, De Laet I, Dits H, Van Regenmortel N et al (2012) Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension. Ann Intensive Care 2(Suppl 1):S19CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Inal MT, Memis D, Sezer YA, Atalay M, Karakoc A, Sut N (2011) Effects of intra-abdominal pressure on liver function assessed with the LiMON in critically ill patients. Can J Surg 54(3):161–166CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lee RK (2012) Intra-abdominal hypertension and abdominal compartment syndrome: a comprehensive overview. Crit Care Nurse 32(1):19–31CrossRefPubMedGoogle Scholar
  35. 35.
    Correa-Martín L, Castellanos G, García M, Sánchez-Margallo FM (2013) Renal consequences of intraabdominal hypertension in a porcine model. Search for the choice indirect technique for intraabdominal pressure measurement. Actas Urol Esp 37(5):273–279CrossRefPubMedGoogle Scholar
  36. 36.
    Malbrain ML (2004) Different techniques to measure intra-abdominal pressure (IAP): time for a critical re-appraisal. Intensive Care Med 30(3):357–371CrossRefPubMedGoogle Scholar
  37. 37.
    Martín A, Saboya S, Patiño M, Silva JA, Gómez S, Blanco JJ (2008) Hemodynamic monitoring: PiCCO system. Enferm Intensiva 19(3):132–140CrossRefGoogle Scholar
  38. 38.
    de Tomás J, Bardina A, Perea J (2001) Utilidad de la tonometría por aire en el diagnóstico de la isquemia intestinal experimental. Cir Esp 70:129–132CrossRefGoogle Scholar
  39. 39.
    Park PO, Haglund U, Bulkley GB, Fält K (1990) The sequence of development of intestinal tissue injury after strangulation ischemia and reperfusion. Surgery 107(5):574–580PubMedGoogle Scholar
  40. 40.
    Quaedackers JS, Beuk RJ, Bennet L, Charlton A, oude Egbrink MG, Gunn AJ et al (2000) An evaluation of methods for grading histologic injury following ischemia/reperfusion of the small bowel. Transplant Proc 32(6):1307–1310CrossRefPubMedGoogle Scholar
  41. 41.
    Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN (1970) Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg 101(4):478–483CrossRefPubMedGoogle Scholar
  42. 42.
    Brandt LJ, Boley SJ (2000) AGA technical review on intestinal ischemia. Am Gastrointest Assoc Gastroenterol 118(5):954–968Google Scholar
  43. 43.
    Burns BJ, Brandt LJ (2003) Intestinal ischemia. Gastroenterol Clin North Am 32(4):1127–1143CrossRefPubMedGoogle Scholar
  44. 44.
    American Gastroenterological Association Medical Position Statement (2000) Guidelines on intestinal ischemia. Gastroenterology 118(5):951–953CrossRefGoogle Scholar
  45. 45.
    Oldenburg WA, Lau LL, Rodenberg TJ, Edmonds HJ, Burger CD (2004) Acute mesenteric ischemia: a clinical review. Arch Intern Med 164(10):1054–1062CrossRefPubMedGoogle Scholar
  46. 46.
    Olofsson PH, Berg S, Ahn HC, Brudin LH, Vikström T, Johansson KJ (2009) Gastrointestinal microcirculation and cardiopulmonary function during experimentally increased intra-abdominal pressure. Crit Care Med 37(1):230–239CrossRefPubMedGoogle Scholar
  47. 47.
    Gudmundsson FF, Gislason HG, Dicko A, Horn A, Viste A, Grong K et al (2001) Effects of prolonged increased intra-abdominal pressure on gastrointestinal blood flow in pigs. Surg Endosc 15(8):854–860CrossRefPubMedGoogle Scholar
  48. 48.
    El-Awady SI, El-Nagar M, El-Dakar M, Ragab M, Elnady G (2009) Bacterial translocation in an experimental intestinal obstruction model. C-reactive protein reliability? Acta Cir Bras 24(2):98–106CrossRefPubMedGoogle Scholar
  49. 49.
    Leite Junior R, Mello NB, Pereira LeP, Takiya CM, Oliveira CA, Schanaider A (2010) Enterocyte ultrastructural alterations following intestinal obstruction in rats. Acta Cir Bras 25(1):2–8CrossRefPubMedGoogle Scholar
  50. 50.
    Annecke T, Kubitz JC, Kahr S, Hilberath JM, Langer K, Kemming GI et al (2007) Effects of sevoflurane and propofol on ischaemia-reperfusion injury after thoracic-aortic occlusion in pigs. Br J Anaesth 98(5):581–590CrossRefPubMedGoogle Scholar
  51. 51.
    Correa-Martín L, Párraga E, Sánchez-Margallo FM, Latorre R, López-Albors O, Wise R et al (2016) Mechanical intestinal obstruction in a porcine model: effects of intra-abdominal hypertension. A preliminary study. PLoS ONE 11(2):e0148058CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Diebel L, Saxe J, Dulchavsky S (1992) Effect of intra-abdominal pressure on abdominal wall blood flow. Am Surg 58(9):573–575 (discussion 5–6)PubMedGoogle Scholar
  53. 53.
    Portas M, Garutti I, López J, Ferrando A, Fernández-Quero Bonilla L (2002) Utilidad del pH intramucoso sigmoideo en el diagnóstico precoz de la colitis isquémica postcirugía aórtica. Rev Esp Anestesiol Reanim 49:160–162Google Scholar
  54. 54.
    Portas M, Garutti I, Fernández-Quero Bonilla L (2003) Tonometría gastrointestinal: una nueva herramienta para el anestesiólogo. Rev Esp Anestesiol Reanim 50:401–408Google Scholar
  55. 55.
    Kotzampassi K, Paramythiotis D, Eleftheriadis E (2000) Deterioration of visceral perfusion caused by intra-abdominal hypertension in pigs ventilated with positive end-expiratory pressure. Surg Today 30(11):987–992CrossRefPubMedGoogle Scholar
  56. 56.
    Pattillo JC, Storaker M, Anastasiadis Z, Llanos O, Urenda J, López F, Castillo L, Bugedo G, Hernández G (2004) Desarrollo de un modelo experimental de hipertensión intra-abdominal. Rev Chil Med Intensiva 19:7–12Google Scholar
  57. 57.
    Correa-Martín L, Castellanos G, García-Lindo M, Díaz-Güemes I, Piñero A, Sánchez-Margallo FM (2014) Intra-abdominal hypertension: effects on the splanchnic circulation. Preliminary study in a model of ascites. Gastroenterol Hepatol 37(2):51–57CrossRefPubMedGoogle Scholar
  58. 58.
    van Noord D, Mensink PB, de Knegt RJ, Ouwendijk M, Francke J, van Vuuren AJ et al (2011) Serum markers and intestinal mucosal injury in chronic gastrointestinal ischemia. Dig Dis Sci 56(2):506–512CrossRefPubMedGoogle Scholar
  59. 59.
    Chang M, Tang H, Liu D, Li Y, Zhang L (2016) Comparison of melatonin, hypertonic saline, and hydroxyethyl starch for resuscitation of secondary intra-abdominal hypertension in an animal model. PLoS ONE 11(8):e0161688CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ester Párraga Ros
    • 1
  • Laura Correa-Martín
    • 2
  • Francisco M. Sánchez-Margallo
    • 2
  • Irma Eugenia Candanosa-Aranda
    • 3
  • Manu L. N. G. Malbrain
    • 4
  • Robert Wise
    • 5
    • 6
    • 7
  • Rafael Latorre
    • 1
  • Octavio López Albors
    • 1
  • Gregorio Castellanos
    • 8
  1. 1.Department of Anatomy and Comparative Pathology, Veterinary FacultyUniversity of MurciaMurciaSpain
  2. 2.Laparoscopy DepartmentJesús Usón Minimally Invasive Surgery Centre (JUMISC)CáceresSpain
  3. 3.Highlands Teaching and Research Farm (CEIEPAA), Faculty of Veterinary MedicineNational Autonomous University of MéxicoQuerétaroMexico
  4. 4.Medical and Surgical ICU and High Care Burn Unit, Ziekenhuis Netwerk AntwerpenZNA Stuivenberg/St-ErasmusAntwerpBelgium
  5. 5.Pietermaritzburg Metropolitan Department of AnaestheticsCritical Care and Pain ManagementPietermaritzburgSouth Africa
  6. 6.Clinical Unit, Critical CareEdendale HospitalPietermaritzburgSouth Africa
  7. 7.Discipline of Anaesthesiology and Critical Care, School of Clinical MedicineUniversity of KwaZulu-NatalDurbanSouth Africa
  8. 8.Department of General SurgeryVirgen de la Arrixaca General University HospitalMurciaSpain

Personalised recommendations