Skip to main content

Advertisement

Log in

Long-term performance and acute toxicity assessment of scaled-up air–cathode microbial fuel cell fed by dairy wastewater

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Long-term performance of a scaled-up air–cathode microbial fuel cell (MFC) and toxicity removal were studied with dairy wastewater (DW) used as the substrate. The MFC in a semi-continuous flow was strategically inoculated with consortium of Shewanella oneidensis and Clostridium butyricum. The scaled-up approach delivered a maximum power density of 0.48 W/m3 (internal resistance of 73 Ω) removing 93% of total chemical oxygen demand and 95% of total biochemical oxygen demand at organic loading rate (OLR) of 0.9 kg COD/m3/d and hydraulic retention time (HRT) of 21 days. It also achieved high removal efficiency of nitrate (100%), organic nitrogen (57%), sulfate (90%) and organic phosphorus (90%). The power generation and DW degradation performance decreased with OLR of 1.8 kg COD/m3/d and HRT of 10.5 days. Furthermore, testing of acute toxicity with the microcrustacean, Daphnia similis, revealed high toxic effect of the raw DW, but no toxic effects of the MFC effluent during 95 days of operation. These outcomes demonstrated that scaled-up MFC fed with high-strength DW should be an effective system for pollutants removal and simultaneously energy recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kasmi M (2018) Biological processes as promoting way for both treatment and valorization of dairy industry effluents. Waste Biomass Valor 9:195–209. https://doi.org/10.1007/s12649-016-9795-7

    Article  CAS  Google Scholar 

  2. Boguniewicz-Zablocka J, Klosok-Bazan I, Naddeo V (2019) Water quality and resource management in the dairy industry. Environ Sci Pollut Res 26:1208–1216. https://doi.org/10.1007/s11356-017-0608-8

    Article  CAS  Google Scholar 

  3. Ahmad T, Aadil RM, Ahmed H, Rahman U, Soares BCV, Souza SLQ, Pimentel TC, Scudino H, Guimarães JT, Esmerino EA, Freitas MQ, Almada RB, Vendramel SMR, Silva MC, Cruz AG (2019) Trends in food science & technology treatment and utilization of dairy industrial waste : a review. Trends Food Sci Technol 88:361–372. https://doi.org/10.1016/j.tifs.2019.04.003

    Article  CAS  Google Scholar 

  4. Yan M, Holden NM (2018) Life cycle assessment of multi-product dairy processing using Irish butter and milk powders as an example. J Clean Prod 198:215–230. https://doi.org/10.1016/j.jclepro.2018.07.006

    Article  Google Scholar 

  5. Chokshi K, Pancha I, Ghosh A, Mishra S (2016) Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production. Bioresour Technol 221:455–460. https://doi.org/10.1016/j.biortech.2016.09.070

    Article  CAS  PubMed  Google Scholar 

  6. Oh JH, Park J, Ellis TG (2015) Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions. Bioprocess Biosys Eng 38:353–363. https://doi.org/10.1007/s00449-014-1275-5

    Article  CAS  Google Scholar 

  7. Pereira MS, Borges AC, Heleno FF, Squillace LFA, Faroni LRDA (2018) Treatment of synthetic milk industry wastewater using batch dissolved air flotation. J Clean Prod 189:729–737. https://doi.org/10.1016/j.jclepro.2018.04.065

    Article  CAS  Google Scholar 

  8. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: Methodology and technology. Environ Sci Technol 40:5181–5192. https://doi.org/10.1021/es0605016

    Article  CAS  PubMed  Google Scholar 

  9. Lee M, Kakarla R, Min B (2019) Performance of an air-cathode microbial fuel cell under varied relative humidity conditions in the cathode chamber. Bioprocess Biosyst Eng 42:1247–1254. https://doi.org/10.1007/s00449-019-02122-9

    Article  CAS  PubMed  Google Scholar 

  10. Rossi R, Jones D, Myung J, Zikmund E, Yang W, Gallego YA, Pant D, Evans PJ, Page MA, Cropek DM, Logan BE (2019) Evaluating a multi-panel air cathode through electrochemical and biotic tests. Water Res 148:51–59

    Article  CAS  Google Scholar 

  11. Hiegemann H, Littfinski T, Krimmler S, Lübken M, Klein D, Schmelz KG, Ooms K, Pant D, Wichern M (2019) Performance and inorganic fouling of a submergible 255 L prototype microbial fuel cell module during continuous long-term operation with real municipal wastewater under practical conditions. Bioresour Technol 294:122227. https://doi.org/10.1016/j.biortech.2019.122227

    Article  CAS  PubMed  Google Scholar 

  12. Kondaveeti S, Moon JM, Min B (2017) Optimum spacing between electrodes in an air-cathode single chamber microbial fuel cell with a low-cost polypropylene separator. Bioprocess Biosyst Eng 40:1851–1858. https://doi.org/10.1007/s00449-017-1838-3

    Article  CAS  PubMed  Google Scholar 

  13. ElMekawy A, Srikanth S, Bajracharya S, Hegab HM, Nigam PS, Singh A, Mohan SV, Pant D (2015) Food and agricultural wastes as substrates for bioelectrochemical system (BES): The synchronized recovery of sustainable energy and waste treatment. Food Res Int 73:213–225. https://doi.org/10.1016/j.foodres.2014.11.045

    Article  CAS  Google Scholar 

  14. Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723. https://doi.org/10.1016/j.apenergy.2016.01.056

    Article  CAS  Google Scholar 

  15. Kondaveeti S, Abu-Reesh IM, Mohanakrishna G, Pant D, He Z (2019) Utilization of residual organics of Labaneh whey for renewable energy generation through bioelectrochemical processes: Strategies for enhanced substrate conversion and energy generation. Bioresour technol 286:121409. https://doi.org/10.1016/j.biortech.2019.121409

    Article  CAS  PubMed  Google Scholar 

  16. Venkata Mohan S, Mohanakrishna G, Velvizhi G, Babu VL, Sarma PN (2010) Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J 51:32–39. https://doi.org/10.1016/j.bej.2010.04.012

    Article  CAS  Google Scholar 

  17. Faria A, Gonçalves L, Peixoto JM, Peixoto L, Brito AG, Martins G (2017) Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell. J Clean Prod 140:971–976. https://doi.org/10.1016/j.jclepro.2016.04.027

    Article  CAS  Google Scholar 

  18. Callegari A, Cecconet D, Molognoni D, Capodaglio AG (2018) Sustainable processing of dairy wastewater: Long-term pilot application of a bio-electrochemical system. J Clean Prod 189:563–569. https://doi.org/10.1016/j.jclepro.2018.04.129

    Article  CAS  Google Scholar 

  19. Shete BS, Shinkar NP (2013) Dairy industry wastewater sources, characteristics and its effects on environment. Int J Current Eng Technol 3:1611–1615

    Google Scholar 

  20. Lee YC, Whang LM, Ngo MH, Chen TH, Cheng HH (2016) Acute toxicity assessment of TFT-LCD wastewater using Daphnia similis and Cyprinus carpio. Process Saf Environ Prot 104:499–506. https://doi.org/10.1016/j.psep.2016.03.003

    Article  CAS  Google Scholar 

  21. Zhu X, Li M, Ma D, Chen L (2018) Changes of biotoxicity in food waste fermentation wastewater treated by a membrane bioreactor system. Environ Sci Pollut Res 25:18728–18736. https://doi.org/10.1007/s11356-018-1857-x

    Article  CAS  Google Scholar 

  22. Marassi RJ, Igreja M, Uchigasaki M, Silva GC (2019) High strength bioethanol wastewater inoculated with single-strain or binary consortium feeding air-cathode microbial fuel cells. Environ Progress Sustain Energy 38:380–386. https://doi.org/10.1002/ep.12967

    Article  CAS  Google Scholar 

  23. APHA (American Public Health Association) (2012) Standard Methods for the examination of Water and Wastewater, 22th edn. American Water Works Association, Water Environment Federation, Washington

  24. Pereira EL, Paiva TCB, Silva FT (2016) Physical-chemical and ecotoxicological characterization of slaughtherhouse wastewater resulting from green line slaughter. Water Air Soil Pollunt 227:199

    Article  Google Scholar 

  25. OECD (Organization for Economic Cooperation and Development) (2004) OECD guidelines 202 for the testing of chemicals, Daphnia acute immobilization test. Organization for Economic Cooperation and Development, Paris

  26. Su S-G, Cheng H-Y, Zhu T-T, Wang H-C, Wang A-J (2018) Kinetic competition between microbial anode respiration and nitrate respiration in a bioelectrochemical system. Bioelectrochemistry 123:241–247. https://doi.org/10.1016/j.bioelechem.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  27. Subha C, Kavitha S, Abisheka S, Tamilarasan K, Arulazhagan P, Banu JR (2019) Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell. Fuel 251:224–232. https://doi.org/10.1016/j.fuel.2019.04.052

    Article  CAS  Google Scholar 

  28. Haavisto JM, Kokko ME, Lay CH, Puhakka JA (2017) Effect of hydraulic retention time on continuous electricity production from xylose in up-flow microbial fuel cell. Int J Hydrogen Energy 42:27494–27501. https://doi.org/10.1016/j.ijhydene.2017.05.068

    Article  CAS  Google Scholar 

  29. Nimje VR, Chen CY, Chen HR, Chen CC, Huang YM, Tseng MJ, Cheng KC, Chang YF (2012) Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis. Bioresour Technol 104:315–323. https://doi.org/10.1016/j.biortech.2011.09.129

    Article  CAS  PubMed  Google Scholar 

  30. Sevda S, Dominguez-Benetton X, Vanbroekhoven K, Wever HD, Sreekrishnan TR, Pant D (2013) High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194–206. https://doi.org/10.1016/j.apenergy.2012.12.037

    Article  CAS  Google Scholar 

  31. Hidalgo D, Tommasi T, Velayutham K, Ruggeri B (2016) Long term testing of Microbial Fuel Cells: Comparison of different anode materials. Bioresour Technol 219:37–44. https://doi.org/10.1016/j.biortech.2016.07.084

    Article  CAS  PubMed  Google Scholar 

  32. Ieropoulos I, Winfield J, Greenman J (2010) Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresour Technol 101:3520–3525. https://doi.org/10.1016/j.biortech.2009.12.108

    Article  CAS  PubMed  Google Scholar 

  33. Kokko M, Epple S, Gescher J, Kerzenmacher S (2018) Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. Bioresour Technol 258:376–389. https://doi.org/10.1016/j.biortech.2018.01.090

    Article  CAS  PubMed  Google Scholar 

  34. Sindhuja M, Sudha V, Harinipriya S (2019) Insights on the resistance, capacitance and bioelectricity generation of microbial fuel cells by electrochemical impedance studies. Int J Hydrogen Energy 44:5428–5436. https://doi.org/10.1016/j.ijhydene.2018.12.075

    Article  CAS  Google Scholar 

  35. Cetinkaya AY, Ozdemir OK, Demir A, Ozkaya B (2017) Electricity production and characterization of high-strength industrial wastewaters in microbial fuel cell. Appl Biochem Biotechnol 182:468–481. https://doi.org/10.1007/s12010-016-2338-7

    Article  CAS  PubMed  Google Scholar 

  36. Marassi RJ, Hermanny RS, Silva GC, Silva FT, Paiva TCB (2019) Electricity production and treatment of high-strength dairy wastewater in a microbial fuel cell using acclimated electrogenic consortium. Int J Environ Sci Technol 16:7339–7348. https://doi.org/10.1007/s13762-019-02391-7

    Article  CAS  Google Scholar 

  37. Wenzel J, Fuentes L, Cabezas A, Etchebehere C (2017) Microbial fuel cell coupled to biohydrogen reactor: a feasible technology to increase energy yield from cheese whey. Bioprocess Biosyst Eng 40:807–819. https://doi.org/10.1007/s00449-017-1746-6

    Article  CAS  PubMed  Google Scholar 

  38. Asefi B, Li SL, Moreno HA, Sanchez-Torres V, Hu A, Li J, Yu CP (2019) Characterization of electricity production and microbial community of food waste-fed microbial fuel cells. Process Saf Environ Prot 125:83–91. https://doi.org/10.1016/j.psep.2019.03.016

    Article  CAS  Google Scholar 

  39. Mohanakrishna G, Abu-reesh IM, Al-raoush RI, He Z (2018) Cylindrical graphite based microbial fuel cell for the treatment of industrial wastewaters and bioenergy generation. Bioresour Technol 247:753–758. https://doi.org/10.1016/j.biortech.2017.09.174

    Article  CAS  PubMed  Google Scholar 

  40. Metcalf and Eddy (2013) Wastewater Engineering: Treatment and Resource Recovery, 5th edn. McGraw-Hill, New York

    Google Scholar 

  41. Nancharaiah YV, Venkata Mohan S, Lens PNL (2016) Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresour Technol 215:173–185. https://doi.org/10.1016/j.biortech.2016.03.129

    Article  CAS  PubMed  Google Scholar 

  42. Tao Q, Zhou S, Luo J, Yuan J (2015) Nutrient removal and electricity production from wastewater using microbial fuel cell technique. Desalination 365:92–98

    Article  CAS  Google Scholar 

  43. Ali AH, Al-Mussawy HA, Hussein MJ, Hamadi NJ (2019) Comparison between conventional and modified microbial fuel cell for wastewater treatment and electricity generation. Int J Environ Sci Technol 16:8141–8150. https://doi.org/10.1007/s13762-019-02355-x

    Article  CAS  Google Scholar 

  44. Bratkova S, Alexieva Z, Angelov A, Nikolova K, Genova P, Ivanov R, Gerginova M, Peneva N, Beschkov V (2019) Efficiency of microbial fuel cells based on the sulfate reduction by lactate and glucose. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02223-8

    Article  Google Scholar 

  45. Seo Y, Kang H, Chang S, Lee Y-Y, Cho K-S (2018) Effects of nitrate and sulphate on the performance and bacterial community structure of membrane-less single-chamber air-cathode microbial fuel cells. J Environ Sci Health Part A 53:13–24

    Article  CAS  Google Scholar 

  46. Palanisamy G, Jung HY, Sadhasivam T, Kurkuri MD, Kim SC, Roh SH (2019) A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. J Clean Prod 221:598–621. https://doi.org/10.1016/j.jclepro.2019.02.172

    Article  CAS  Google Scholar 

  47. Costa JB, Rodgher S, Daniel LA, Espíndola ELG (2014) Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation. Ecotoxicology 23:1803–1813. https://doi.org/10.1007/s10646-014-1346-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES, finance code 001) and Professor Norman Arthur Ratcliffe for his contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo J. Marassi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marassi, R.J., Queiroz, L.G., Silva, D.C.V.R. et al. Long-term performance and acute toxicity assessment of scaled-up air–cathode microbial fuel cell fed by dairy wastewater. Bioprocess Biosyst Eng 43, 1561–1571 (2020). https://doi.org/10.1007/s00449-020-02348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02348-y

Keywords

Navigation