Skip to main content

Advertisement

Log in

Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we simultaneously assessed the effects of three pathways—root litter quality, soil biota, and soil abiotic conditions—on the relationships between plant diversity (in terms of species richness and the presence/absence of grasses and legumes) and root decomposition using structural equation modeling. Our final structural equation model explained 70% of the variation in root mass loss. However, different measures of plant diversity included in our model operated via different pathways to alter root mass loss. Plant species richness had a negative effect on root mass loss. This was partially due to increased Oribatida abundance, but was weakened by enhanced root potassium (K) concentration in more diverse mixtures. Equally, grass presence negatively affected root mass loss. This effect of grasses was mostly mediated via increased root lignin concentration and supported via increased Oribatida abundance and decreased root K concentration. In contrast, legume presence showed a net positive effect on root mass loss via decreased root lignin concentration and increased root magnesium concentration, both of which led to enhanced root mass loss. Overall, the different measures of plant diversity had contrasting effects on root decomposition. Furthermore, we found that root chemistry and soil biota but not root morphology or soil abiotic conditions mediated these effects of plant diversity on root decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • A’Bear AD, Jones TH, Boddy L (2014) Size matters: what have we learnt from microcosm studies of decomposer fungus–invertebrate interactions? Soil Biol Biochem 78:274–283

    Article  CAS  Google Scholar 

  • Abrahamson WG, Caswell H (1982) On the comparative allocations of biomass, energy, and nutrients in plants. Ecology 63:982–991

    Article  Google Scholar 

  • Aulen M, Shipley B, Bradley R (2012) Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits. Ann Bot 109:287–297

    Article  CAS  PubMed  Google Scholar 

  • Austin AT, Ballaré CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci 107:4618–4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Baxendale C, Orwin KH, Poly F et al (2014) Are plant–soil feedback responses explained by plant traits? New Phytol 204:408–423

    Article  PubMed  Google Scholar 

  • Beck T, Joergensen RG, Kandeler E et al (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Birouste M, Kazakou E, Blanchard A, Roumet C (2012) Plant traits and decomposition: are the relationships for roots comparable to those for leaves? Ann Bot 109:463–472

    Article  PubMed  Google Scholar 

  • Bontti EE, Decant JP, Munson SM et al (2009) Litter decomposition in grasslands of Central North America (US Great Plains). Glob Change Biol 15:1356–1363

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2007) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science and Business Media, New York

    Google Scholar 

  • Butenschoen O, Scheu S, Eisenhauer N (2011) Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biol Biochem 43:1902–1907

    Article  CAS  Google Scholar 

  • Cardinale BJ, Matulich KL, Hooper DU et al (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592

    Article  PubMed  Google Scholar 

  • Cardon ZG, Whitbeck JL (2011) The rhizosphere: an ecological perspective. Elsevier Academic Press, Burlington

    Google Scholar 

  • Catovsky S, Bradford MA, Hector A (2002) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97:443–448

    Article  CAS  Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology, 2nd edn. Springer-Verlag New York, Inc., New York

    Google Scholar 

  • Chen H, Harmon ME, Griffiths RP, Hicks W (2000) Effects of temperature and moisture on carbon respired from decomposing woody roots. For Ecol Manag 138:51–64

    Article  Google Scholar 

  • Chen H, Harmon ME, Sexton J, Fasth B (2002) Fine-root decomposition and N dynamics in coniferous forests of the Pacific Northwest, USA. Can J For Res 32:320–331

    Article  Google Scholar 

  • Chen H, Mommer L, van Ruijven J et al (2017) Plant species richness negatively affects root decomposition in grasslands. J Ecol 105:209–218

    Article  CAS  Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier Academic Press, Burlington

    Google Scholar 

  • Cong W-F, Hoffland E, Li L et al (2015) Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant Soil 391:399–411

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113

    Article  PubMed  Google Scholar 

  • de Graaff M-A, Schadt CW, Rula K et al (2011) Elevated CO2 and plant species diversity interact to slow root decomposition. Soil Biol Biochem 43:2347–2354

    Article  CAS  Google Scholar 

  • Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Ebeling A, Meyer ST, Abbas M et al (2014) Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS One 9:e106529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eisenhauer N, Bessler H, Engels C et al (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496

    Article  CAS  PubMed  Google Scholar 

  • Eisenhauer N, Milcu A, Sabais AC et al (2011a) Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS One 6:e16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenhauer N, Yee K, Johnson EA et al (2011b) Positive relationship between herbaceous layer diversity and the performance of soil biota in a temperate forest. Soil Biol Biochem 43:462–465

    Article  CAS  Google Scholar 

  • Eisenhauer N, Reich PB, Isbell F (2012) Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology 93:2227–2240

    Article  PubMed  Google Scholar 

  • Eisenhauer N, Dobies T, Cesarz S et al (2013) Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc Natl Acad Sci 110:6889–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenhauer N, Lanoue A, Strecker T et al (2017) Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep 7:44641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian J, Zlatanovic S, Mutz M, Premke K (2017) Fungal–bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality. ISME J 11:415–425

    Article  CAS  PubMed  Google Scholar 

  • Fornara DA, Tilman D, Hobbie SE (2009) Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. J Ecol 97:48–56

    Article  CAS  Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA et al (2013) Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide. J Ecol 101:943–952

    Article  CAS  Google Scholar 

  • Gastine A, Scherer-Lorenzen M, Leadley PW (2003) No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl Soil Ecol 24:101–111

    Article  Google Scholar 

  • Gessner MO, Swan CM, Dang CK et al (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  PubMed  Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gubsch M, Buchmann N, Schmid B et al (2011) Differential effects of plant diversity on functional trait variation of grass species. Ann Bot 107:157–169

    Article  CAS  PubMed  Google Scholar 

  • Guiz J, Hillebrand H, Borer ET et al (2016) Long-term effects of plant diversity and composition on plant stoichiometry. Oikos 125:613–621

    Article  CAS  Google Scholar 

  • Hansen RA, Coleman DC (1998) Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Appl Soil Ecol 9:17–23

    Article  Google Scholar 

  • Harrell FE Jr, Dupont C et al (2016) Hmisc: Harrell miscellaneous. https://CRAN.R-project.org/package=Hmisc

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Hector A, Beale AJ, Minns A et al (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371

    Article  Google Scholar 

  • Hedley MJ, Stewart JWB, Bs Chauhan (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513

    Article  PubMed  Google Scholar 

  • Hoffmann K, Bivour W, Früh B et al (2014) Klimauntersuchungen in Jena für die Anpassung an den Klimawandel und seine erwarteten Folgen. Deutscher Wetterdienst, Offenbach am Main

    Google Scholar 

  • Howell RK (1987) Rhizobium induced mineral uptake in peanut tissues. J Plant Nutr 10:1297–1305

    Article  CAS  Google Scholar 

  • Iiyama K, Wallis AFA (1988) An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Sci Technol 22:271–280

    Article  CAS  Google Scholar 

  • Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51:145–161

    Article  CAS  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR et al (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  CAS  PubMed  Google Scholar 

  • Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309

    Article  CAS  Google Scholar 

  • Joo SJ, Yim MH, Nakane K (2006) Contribution of microarthropods to the decomposition of needle litter in a Japanese cedar (Cryptomeria japonica D. Don) plantation. For Ecol Manag 234:192–198

    Article  Google Scholar 

  • Kaspari M, Yanoviak SP, Dudley R et al (2009) Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. Proc Natl Acad Sci USA 106:19405–19409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempson D, Lloyd M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia 3:1–21

    Google Scholar 

  • Kline RB (2005) Principles and practice of structural equation modeling, 2nd edn. Guilford Press, New York

    Google Scholar 

  • Kramer C, Trumbore S, Fröberg M et al (2010) Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol Biochem 42:1028–1037

    Article  CAS  Google Scholar 

  • Kuchenbuch R, Claassen N, Jungk A (1986) Potassium availability in relation to soil moisture. Plant Soil 95:233–243

    Article  CAS  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH (eds) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison

    Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA et al (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:1–8. doi:10.1038/ncomms7707

    Google Scholar 

  • Leimer S, Oelmann Y, Wirth C, Wilcke W (2015) Time matters for plant diversity effects on nitrate leaching from temperate grassland. Agric Ecosyst Environ 211:155–163

    Article  CAS  Google Scholar 

  • Li X, Han S, Zhang Y (2007) Foliar decomposition in a broadleaf-mixed Korean pine (Pinus koraiensis Sieb. Et Zucc) plantation forest: the impact of initial litter quality and the decomposition of three kinds of organic matter fraction on mass loss and nutrient release rates. Plant Soil 295:151–167

    Article  CAS  Google Scholar 

  • Lipowsky A, Roscher C, Schumacher J et al (2015) Plasticity of functional traits of forb species in response to biodiversity. Perspect Plant Ecol Evol Syst 17:66–77

    Article  Google Scholar 

  • Liu P, Huang J, Han X, Sun OJ (2009) Litter decomposition in semiarid grassland of Inner Mongolia, China. Rangel Ecol Manag 62:305–313

    Article  Google Scholar 

  • Ma Z, Chen HYH (2016) Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Glob Ecol Biogeogr 25:1387–1396

    Article  Google Scholar 

  • Makkonen M, Berg MP, Handa IT et al (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041

    Article  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press Limited, London

    Google Scholar 

  • Mommer L, Visser E, PrometheusWiki contributors (2011) Root distribution in soils I. Root core sampling and destructive pot harvests. Prometheus Wiki, CSIRO Publishing, Clayton South

    Google Scholar 

  • Mommer L, Padilla FM, van Ruijven J et al (2015) Diversity effects on root length production and loss in an experimental grassland community. Funct Ecol 29:1560–1568

    Article  Google Scholar 

  • Moore JC, McCann K, de Ruiter PC (2005) Modeling trophic pathways, nutrient cycling, and dynamic stability in soils. Pedobiologia 49:499–510

    Article  CAS  Google Scholar 

  • Moreira-Vilar FC, de Cássia Siqueira-Soares R, Finger-Teixeira A et al (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than klason and thioglycolic acid methods. PLoS One 9:e110000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moura JCMS, Bonine CAV, De Oliveira Fernandes Viana J et al (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nicolai V (1988) Phenolic and mineral content of leaves influences decomposition in European forest ecosystems. Oecologia 75:575–579

    Article  PubMed  Google Scholar 

  • Niklaus PA, Kandeler E, Leadley PW et al (2001) A link between plant diversity, elevated CO2 and soil nitrate. Oecologia 127:540–548

    Article  PubMed  Google Scholar 

  • Niklaus PA, Le Roux X, Poly F et al (2016) Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide. Oecologia 181:919–930

    Article  PubMed  Google Scholar 

  • Oelmann Y, Buchmann N, Gleixner G et al (2011) Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: Development in the first 5 years after establishment. Glob Biogeochem Cycles 25:GB2014

    Article  CAS  Google Scholar 

  • Perakis SS, Matkins JJ, Hibbs DE (2012) Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter. Ecosphere 3:1–12

    Article  Google Scholar 

  • Peverill KI, Sparrow LA, Reuter DJ (1999) Soil analysis: an interpretation manual. CSIRO Publishing, Collingwood

    Google Scholar 

  • Poorter H, Niklas KJ, Reich PB et al (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  CAS  PubMed  Google Scholar 

  • Prieto I, Stokes A, Roumet C (2016) Root functional parameters predict fine root decomposability at the community level. J Ecol 104:725–733

    Article  CAS  Google Scholar 

  • Prieto I, Birouste M, Zamora-Ledezma E et al (2017) Decomposition rates of fine roots from three herbaceous perennial species: combined effect of root mixture composition and living plant community. Plant Soil 415:359–372

    Article  CAS  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Ravenek JM, Bessler H, Engels C et al (2014) Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123:1528–1536

    Article  Google Scholar 

  • Roscher C, Schumacher J, Baade J et al (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121

    Article  Google Scholar 

  • Rosenkranz S, Wilcke W, Eisenhauer N, Oelmann Y (2012) Net ammonification as influenced by plant diversity in experimental grasslands. Soil Biol Biochem 48:78–87

    Article  CAS  Google Scholar 

  • Rosseel Y (2012) {lavaan}: an {R} package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  • Roumet C, Birouste M, Picon-Cochard C et al (2016) Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826

    Article  PubMed  Google Scholar 

  • Salamon JA, Schaefer M, Alphei J et al (2004) Effects of plant diversity on Collembola in an experimental grassland ecosystem. Oikos 106:51–60

    Article  Google Scholar 

  • Schaefer M (ed) (2009) Brohmer Fauna von Deutschland: Ein Bestimmungsbuch unserer Heimischen Tierwelt, 23rd edn. Quelle & Meyer Verlag, Wiebelsheim

    Google Scholar 

  • Schaller J, Hodson MJ, Struyf E (2017) Is relative Si/Ca availability crucial to the performance of grassland ecosystems? Ecosphere. doi:10.1002/ecs2.1726

    Google Scholar 

  • Scherber C, Eisenhauer N, Weisser WW et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556

    Article  CAS  PubMed  Google Scholar 

  • Scherer-Lorenzen M (2008) Functional diversity affects decomposition processes in experimental grasslands. Funct Ecol 22:547–555

    Article  Google Scholar 

  • Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E-D (2003) The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84:1539–1552

    Article  Google Scholar 

  • Scheu S (1992) Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol Biochem 24:1113–1118

    Article  Google Scholar 

  • Schneider K, Renker C, Scheu S, Maraun M (2004) Feeding biology of oribatid mites: a minireview. Phytophaga 14:247–256

    Google Scholar 

  • Schreeg LA, Mack MC, Turner BL (2013) Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology 94:94–105

    Article  PubMed  Google Scholar 

  • Schroeder-Georgi T, Wirth C, Nadrowski K et al (2016) From pots to plots: hierarchical trait-based prediction of plant performance in a mesic grassland. J Ecol 104:206–218

    Article  Google Scholar 

  • Siepel H, de Ruiter-Dijkman EM (1993) Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol Biochem 25:1491–1497

    Article  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Article  PubMed  Google Scholar 

  • Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798

    Article  CAS  PubMed  Google Scholar 

  • Smith SW, Woodin SJ, Pakeman RJ et al (2014) Root traits predict decomposition across a landscape-scale grazing experiment. New Phytol 203:851–862

    Article  PubMed  PubMed Central  Google Scholar 

  • Solly EF, Schoening I, Boch S et al (2014) Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 382:203–218

    Article  CAS  Google Scholar 

  • Spehn EM, Joshi J, Schmid B et al (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224:217–230

    Article  CAS  Google Scholar 

  • Steinbeiss S, Beßler H, Engels C et al (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Change Biol 14:2937–2949

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal:bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Thein S, Roscher C, Schulze E-D (2008) Effects of trait plasticity on aboveground biomass production depend on species identity in experimental grasslands. Basic Appl Ecol 5:475–484

    Article  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Wang H, Liu S, Mo J (2010) Correlation between leaf litter and fine root decomposition among subtropical tree species. Plant Soil 335:289–298

    Article  CAS  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Whitehead DC (2000) Nutrient elements in grassland: soil–plant–animal relationships. CABI Publishing, Oxon

    Book  Google Scholar 

  • Wildung RE, Garland TR, Buschbom RL (1975) The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol Biochem 7:373–378

    Article  CAS  Google Scholar 

  • Wright A, Schnitzer SA, Reich PB (2014) Living close to your neighbors: the importance of both competition and facilitation in plant communities. Ecology 95:2213–2223

    Article  PubMed  Google Scholar 

  • Yue K, Yang W, Peng C et al (2016) Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Sci Total Environ 566–567:279–287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Jena Experiment was funded by the German Science Foundation (DFG, FOR 1451) and was supported by the Friedrich-Schiller-University Jena and the Max Planck Society. We thank the gardeners of the Jena Experiment for maintaining the plots and student helpers for the field work and sample preparation.

Data accessibility

Root mass loss, root C:N ratio, and soil water content are deposited at the Jena Experiment database and will be accessible via Dryad Digital Repository http://dx.doi.org/10.5061/dryad.6k23f (Chen et al. 2017). The rest of the data are deposited at the Jena Experiment database and will be deposited at Pangaea (http://www.pangaea.de).

Author information

Authors and Affiliations

Authors

Contributions

LM, JR, AG, MSL, and AW designed the experiment. HC, CF, OGM, NH, and ML collected the data. HC analyzed the data and wrote the manuscript with input from KB and AW. All authors provided input on the final written manuscript.

Corresponding author

Correspondence to Hongmei Chen.

Ethics declarations

Funding

The Jena Experiment was funded by the German Science Foundation (DFG, FOR 1451). LM was funded by the Netherlands Organisation for Scientific Research (NWO, Vidi Grant 864.14.006). MSL was funded by the DFG (Gl262/14 and Gl262/19). YO was funded by the DFG (Oe516/3-2), WW was funded by the DFG (Wi1601/4) and the Swiss National Science Foundation (SNF, 200021E-131195/1).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Communicated by Pascal A. Niklaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Oram, N.J., Barry, K.E. et al. Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition. Oecologia 185, 499–511 (2017). https://doi.org/10.1007/s00442-017-3962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3962-9

Keywords

Navigation