Skip to main content
Log in

Olfactory signaling via trace amine-associated receptors

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors that function as odorant receptors in the main olfactory system of vertebrates. TAARs are monoallelically expressed in primary sensory neurons where they couple to the same transduction cascade as canonical olfactory receptors and are mapped onto glomeruli within a specific region of the olfactory bulb. TAARs have a high affinity for volatile amines, a class of chemicals that are generated during the decomposition of proteins and are ubiquitous physiological metabolites that are found in body fluids. Thus, amines are proposed to play an important role in intra- and interspecific communication such as signaling the sex of the conspecific, the quality of the food source, or even the proximity of a predator. TAARs have a crucial role in the perception of these behaviorally relevant compounds as the genetic deletion of all or even individual olfactory TAARs can alter the behavioral response and reduce the sensitivity to amines. The small size of this receptor family combined with the ethological relevance of their ligands makes the TAARs an attractive model system for probing olfactory perception. This review will summarize the current knowledge on the olfactory TAARs and discuss whether they represent a unique subsystem within the main olfactory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azzouzi N, Barloy-Hubler F, Galibert F (2015) Identification and characterization of cichlid TAAR genes and comparison with other teleost TAAR repertoires. BMC Genomics 16:335

    PubMed  PubMed Central  Google Scholar 

  • Bai J, Baker S, Goodrich-Schneider R, Montazeri N, Sarnoski P (2019) Aroma profile characterization of mahi-mahi and tuna for determining spoilage using purge and trap gas chromatography mass spectrometry. J Food Sci 84:481–489

    CAS  PubMed  Google Scholar 

  • Barger G, Walpole G (1909) Isolation of the pressor principles of putrid meat. J Physiol 38:343–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandawat V, Reisert J, Yau K (2005) Elementary response of olfactory receptor neurons to odorants. Science 308:1931–1934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borowsky B, Adham N, Jones K, Raddatz R, Artymyshyn R, Ogozalek K, Durkin M, Lakhlani P, Bonini J, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa F, Branchek T, Gerald C (2001) Trace amines: identification of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A 98:8966–8971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouabe H, Okkenhaug K (2013) Gene targeting in mice: a review. Methods Mol Biol 1064:315–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bozza T, Vassalli A, Fuss S, Zhang J, Weiland B, Pacifico R, Feinstein P, Mombaerts P (2009) Mapping class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 61:220–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    CAS  Google Scholar 

  • Bunzow J, Sonders M, Arttamangkul S, Harrison L, Zhang G, Quigley D, Darland T, Suchland K, Pasumamula S, Kennedy J, Olson S, Magenis R, Amara S, Grandy D (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60:1181–1188

    CAS  PubMed  Google Scholar 

  • De March C, Kim S, Antoncazk S, Goddard W, Golebiowski J (2015) G protein-coupled receptors: from sequence to structure. Protein Sci 24:1543–1548

    PubMed  PubMed Central  Google Scholar 

  • Dewan A, Pacfico R, Zhan R, Rinberg D, Bozza T (2013) Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497:486–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dewan A, Cichy A, Zhang J, Miguel K, Feinstein P, Rinberg D, Bozza T (2018) Single olfactory receptors set odor detection thresholds. Nat Commun 9:2887

    PubMed  PubMed Central  Google Scholar 

  • Dieris M, Ahuja G, Krishna V, Korsching S (2017) A single identified glomerulus in the zebrafish olfactory bulb carries the high-affinity response to death-associated odor cadaverine. Sci Rep 7:40892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elsaesser R, Montani G, Tirindelli R, Paysan J (2005) Phosphatidyl-inositide signaling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur J Neurosci 21:2692–2700

    PubMed  Google Scholar 

  • Espinoza S, Sukhanov I, Efimova E, Kozlova A, Antonova K, Illiano P, Leo D, Merkulyeva N, Kalinina D, Musienko P, Rocchi A, Mus L, Sotnikova T, Gainetdinov R (2020) Trace amine-associated receptor 5 provides olfactory input into limbic brain areas and modulates emotional behaviors and serotonin transmission. Front Mol Neurosci 13:18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eyun S (2018) Accelerated pseudogenization of trace amine-associated receptors in primates. Genes Brain Behav 18:e12543

    Google Scholar 

  • Eyun S, Moriyama H, Hoffman F, Moriyama E (2016) Molecular evolution and functional divergence of trace amine-associated receptors. PLoS One 11:e0151023

    PubMed  PubMed Central  Google Scholar 

  • Fennema D, Phillips I, Shephard E (2016) Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMOS)-mediated host microbiome metabolic axis implicated in health and disease. Drug Metab Dispos 44:1839–1850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrero D, Lemon J, Fluegge D, Pashkovski S, Korzan W, Datta S, Spehr M, Fendt M, Liberles S (2011) Detection and avoidance of a carnivore odor by prey. PNAS 108:11235–11240

    CAS  PubMed  Google Scholar 

  • Ferrero D, Wacker D, Roque M, Baldwin M, Stevens R, Liberles S (2012) Agonists for 13 trace amine-associated receptors provide insight into the molecular basis of odor selectivity. ACS Chem Biol 7:1184–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiering S, Kim C, Epner E, Groudine M (1993) An “in-out” strategy using gene targeting and FLP recombinase for the functional dissection of complex DNA regulatory elements: analysis of the beta-globin locus control region. Proc Natl Acad Sci U S A 90:8469–8473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischer J, Schwarzenbacher K, Breer H (2007) Expression of trace amine-associated receptors in the Grueneberg ganglion. Chem Senses 32:623–631

    CAS  PubMed  Google Scholar 

  • Francesconi J, Macaroy C, Sawant S, Hamrick H, Wahab S, Klein I, McGann J (2020) Sexually dimorphic behavioral and neural responses to a predator scent. Behav Brain Res 382:112467

  • Gainetdinov R, Hoener M, Berry M (2018) Trace amines and their receptors. Pharmacol Rev 70:549–620

    CAS  PubMed  Google Scholar 

  • Gao S, Liu S, Yao J, Li N, Yuan Z, Zhou T, Li Q, Liu Z (2017) Genomic organization and evolution of olfactory receptors and trace amine-associated receptors in channel catfish, Ictalurus punctatus. Biochim Biophys Acta 1861:644–651

    CAS  Google Scholar 

  • Greer P, Bear D, Lassance J, Bloom M, Tsukhara T, Pashvoski S, Masuda F, Nowlan A, Kirchner R, Hoekstra H, Datta S (2016) A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell 165:1734–1748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams J, Karoum F, Gal J, Shih J (1997) Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet 17:206–210

    CAS  PubMed  Google Scholar 

  • Harmeier A, Meyer C, Staempfli A, Casagrande F, Petrinovic M, Zhang Y, Kunnecke B, Iglesias A, Honer O, Hoener M (2018) How female mice attract males: a urinary volatile amine activates a trace amine-associated receptor that induces male sexual interest. Front Pharmacol 9:924

    PubMed  PubMed Central  Google Scholar 

  • Hashiguchi Y, Nishida M (2007) Evolution of trace amine-associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in olfactory epithelium. Mol Biol Evol 24:2099–2107

    CAS  PubMed  Google Scholar 

  • Horio N, Murata K, Yosikawa K, Yoshihara Y, Touhara K (2019) Contribution of individual olfactory receptors to odor-induced attractive or aversive behavior in mice. Nat Commun 10:209

    PubMed  PubMed Central  Google Scholar 

  • Horowitz L, Saraiva L, Kuang D, Yoon K, Buck L (2014) Olfactory receptor patterning in a higher primate. J Neurosci 34:12241–12252

    PubMed  PubMed Central  Google Scholar 

  • Hussain A, Saraiva L, Korsching S (2009) Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. PNAS 106:4313–4318

    CAS  PubMed  Google Scholar 

  • Hussain A, Saraiva L, Ferrero D, Ahuja G, Krishna V, Liberles S, Korsching S (2013) High affinity olfactory receptor for the death-associated odor cadaverine. PNAS 110:19579–19584

    CAS  PubMed  Google Scholar 

  • Izquierdo C, Gomez-Tamayo J, Nebel J, Pardo L, Gonzalex A (2018) Identifying human diamine sensors for death related putrescine and cadaverine molecules. PLoS Comput Biol 14:e1005945

    PubMed  PubMed Central  Google Scholar 

  • Johnson M, Tsai L, Roy D, Valenzuela D, Mosley C, Magklara A, Lomvardas S, Liberles S, Barnea G (2012) Neurons expressing trace amine-associated receptors project to discrete glomeruli and constitute an olfactory subsystem. PNAS 109:13410–13415

    CAS  PubMed  Google Scholar 

  • Juilfs D, Fulle H, Zhao A, Houslay M, Garbers D, Beavo J (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci 94:3388–3395

    CAS  PubMed  Google Scholar 

  • Kim C, Epner E, Forester W, Groudine M (1992) Inactivation of the human beta-globin gene by targeted insertion into the beta-globin locus control region. Genes Dev 6:928–938

    CAS  PubMed  Google Scholar 

  • Kleene S (2008) The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 33:839–859

    CAS  PubMed  Google Scholar 

  • Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T, Mori K, Sakano S (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–508

    CAS  PubMed  Google Scholar 

  • Lefevre P, Palin M, Murphy B (2011) Polyamine on the reproductive landscape. Endocr Rev 32:694–712

    CAS  PubMed  Google Scholar 

  • Li Q, Korzan W, Ferrero D, Chang R, Roy D, Buchi M, Lemon J, Kaur A, Stowers L, Fendt M, Liberles S (2013) Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr Biol 23:11–20

    PubMed  Google Scholar 

  • Li Q, Tachie-Baffour Y, Liu Z, Baldwin M, Kruse A, Liberles S (2015) Non-classical amine recognition evolved in a large clade of olfactory receptors. eLIFE 4:e10441

    PubMed  PubMed Central  Google Scholar 

  • Libants S, Carr K, Wu H, Teeter J, Chung-Davidson Y, Zhang Z, Wilkerson C, Li W (2009) The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage. BMC Evol Biol 9:180

    PubMed  PubMed Central  Google Scholar 

  • Liberles S (2009) Trace amine-associated receptors are olfactory receptors in vertebrates. Ann N Y Acad Sci 1170:168–172

    CAS  PubMed  Google Scholar 

  • Liberles S (2015) Trace amine-associated receptors: ligands, neural circuits, and behaviors. Curr Neurobiol 34:1–7

    CAS  Google Scholar 

  • Liberles S, Buck L (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650

    CAS  PubMed  Google Scholar 

  • Lin W, Margolskee R, Donnert G, Hell S, Restrepo D (2007) Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 104:2471–2476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindemann L, Hoener M (2005) A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci 26:274–281

    CAS  PubMed  Google Scholar 

  • Meyer M, Angele A, Kremmer E, Kaupp U, Mueller F (2000) A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci 97:10595–10600

    CAS  PubMed  Google Scholar 

  • Mozell M, Jagodowicz M (1973) Chromatographic separation of odorants by the nose: retention times measured across in vivo olfactory mucosa. Science 181:1247–1249

    CAS  PubMed  Google Scholar 

  • Munger S, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    CAS  PubMed  Google Scholar 

  • Nara K, Saraiva L, Ye X, Buck L (2011) A large-scale analysis of odor coding in the olfactory epithelium. J Neurosci 31:9179–9191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niimura Y (2012) Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genetics. Curr Genomics 13:103–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura K, Utsumi K, Yuhara M, Fujitani Y, Iritani A (1989) Identification of puberty-accelerating pheromones in male mouse urine. J Exp Zool 251:300–305

    CAS  PubMed  Google Scholar 

  • Pacifico R, Dewan A, Cawley D, Guo C, Bozza T (2012) An olfactory subsystem that mediates high sensitivity detection of volatile amines. Cell Rep 2:76–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulos M, Tessel R (1982) Excretion of beta-phenylethylamine is elevated in humans after profound stress. Science 215:1127–1129

    CAS  PubMed  Google Scholar 

  • Perez-Gomez A, Bleymehl K, Stein B, Pyrski M, Birnbaumer L, Munger S, Leiders-Zufall T, Zufall F, Chamero P (2015) Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr Biol 25:1340–1346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinel J, Gorzalka B, Ladak F (1981) Cadaverine and putrescine initiate the burial od dead conspecifics by rats. Physiol Behav 27:819–824

    CAS  PubMed  Google Scholar 

  • Price M, Vandenbergh J (1992) Analysis of puberty-accelerating pheromones. J Exp Zool 264:42–45

    CAS  PubMed  Google Scholar 

  • Reisert J, Zhao H (2011) Response kinetics of olfactory receptor neurons and the implications in olfactory coding. J Gen Physiol 138:303–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reisert J, Lai J, Yau K, Bradley J (2005) Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons. Neuron. 45:553–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos PSC, Courtiol A, Heidel AJ, Höner OP, Heckmann I, Nagy M, Mayer F, Platzer M, Voigt CC, Sommer S (2016) MHC-dependent mate choice is linked to a trace-amine-associated receptor gene in a mammal. Sci Rep 6(1):38490

  • Santos PSC, Mezger M, Kolar M, Michler F, Sommer S (2018) The best smellers make the best choosers: mate choice is affected by female chemosensory receptor gene diversity in a mammal. Proc R Soc B 285(1893):20182426

  • Saito H, Nishizumi H, Suzuki S, Matsumoto H, Ieki N, Abe T, Kiyonari H, Morita M, Yokota H, Hirayama N, Yamazaki T, Kikusui T, Mori K, Sakano H (2017) Immobility responses are induced by photoactivation of single glomerular species responsive to fox odour TMT. Nat Commun 8:16011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saraiva L, Ibarra-Soria X, Khan M, Omura M, Scialdone A, Mombaerts P, Marioni J, Logan D (2015a) Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep 5:18178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saraiva L, Ahuja G, Ivandic I, Syed A, Marioni J, Korsching S, Logan D (2015b) Molecular and neuronal homology between the olfactory systems of zebrafish and mouse. Sci Rep 5:11487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saraiva L, Kondoh K, Ye X, Yoon K, Hernandez M, Buck L (2016) Combinatorial effects of odorants on mouse behavior. PNAS 113:E3300–E3306

    CAS  PubMed  Google Scholar 

  • Saraiva L, Riveros-McKay F, Mezzavilla M, Abou-Moussa E, Arayata C, Makhlouf M, Trimmer C, Ibarra-Soria X, Khan M, Van Gervan L, Jorissen M, Gibbs M, O’Flynn C, McGrane S, Mombaerts P, Marioni J, Mainland J, Logan D (2019) A transcriptomic atlas of mammalian olfactory mucosae reveals an evolutionary influence on food odor detection in humans. Sci Adv 5:eaax0396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Homma R, Nagayama S (2020) Direct comparison of odor responses of homologous glomeruli in the medial and lateral maps of the mouse olfactory bulb. eneuro 7(2):ENEURO.0449-19.2020

  • Scott J, Sherrill L, Jian J, Zhao K (2014) Tuning to odor solubility and sorption pattern in olfactory epithelial responses. J Neurosci 34:2025–2036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott A, Zhang Z, Jia L, Li K, Zhang Q, Dexheimer T, Ellsworth E, Ren J, Chung-Davidson Y, Zu Y, Neubig R, Li W (2019) Spermine in semen of male sea lamprey acts as a sex pheromone. PLoS Biol 17:e3000332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao X, Lakhina V, Cheng R, Marcaccio C, Raper J (2017) Olfactory sensory axons target specific protoglomeruli in the olfactory bulb of zebrafish. Neural Dev 12:18

    PubMed  PubMed Central  Google Scholar 

  • Sharma K, Ahuja G, Hussain A, Balfanz S, Baumann A, Korsching S (2016) Elimination of a ligand gating site generates a supersensitive olfactory receptor. Sci Rep 6:28359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Balfanz S, Baumann A, Korsching S (2018) Full rescue of an inactive olfactory receptor mutant by elimination of an allosteric ligand-gating site. Sci Rep 8:9631

    PubMed  PubMed Central  Google Scholar 

  • Shi L, Javitch J (2002) The binding site of aminergic g protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol 42:437–467

    CAS  PubMed  Google Scholar 

  • Shinoda K, Shiotani Y, Osawa Y (1989) Necklace olfactory glomeruli: form a unique components of the rat primary olfactory system. J Comp Neurol 284:362–373

    CAS  PubMed  Google Scholar 

  • Snoddy A, Heckathorn D, Tessel R (1985) Cod-restraint stress and urinary endogenous β-phenylethylamine in rats. Pharmacol Biochem Behav 22:497–500

    CAS  PubMed  Google Scholar 

  • Staubert C, Boselt I, Bohnekamp J, Rompler H, Enard W, Schoneberg T (2010) Structural and functional evolution of trace amine-associated receptors TAAR3, TAAR4, and TAAR5 in primates. PLoS One 56:e11133

    Google Scholar 

  • Stephan A, Shum E, Hirsh S, Cyngar K, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci 106:11776–11781

    CAS  PubMed  Google Scholar 

  • Syed A, Sansone A, Roner S, Nia S, Manzini I, Korsching S (2015) Different expression domains for two closely related amphibian TAARs generate a bimodal distribution similar to neuronal responses to amine odors. Sci Rep 5:13935

    PubMed  PubMed Central  Google Scholar 

  • Tan L, Li Q, Xie X (2015) Olfactory sensory neurons transiently express multiple olfactory receptors during development. Mol Syst Biol 11:844

    PubMed  PubMed Central  Google Scholar 

  • Tarr H (1938) Trimethylamine formation in relation to the viable bacterial population of spoiling fish muscle. Nature 142:1078

    CAS  Google Scholar 

  • Tazir B, Khan M, Mombaerts P, Grosmaitre X (2016) The extremely broad odorant response profile of mouse olfactory sensory neurons expressing the odorant receptor MOR256-17 includes trace amine-associated receptor ligands. Eur J Neurosci 43:608–617

    PubMed  PubMed Central  Google Scholar 

  • Tessarolo J, Tabesh M, Nesbit M, Davidson W (2014) Genomic organization and evolution of the trace amine-associated receptor (TAAR) repertoire in Atlantic salmon (Salmo salar). G3(Bethesda) 4:1135–1141

    Google Scholar 

  • Touhara K, Vosshall L (2009) Sensing odorants and pheromones with chemosensor receptors. Annu Rev Physiol 71:307–332

    CAS  PubMed  Google Scholar 

  • Veciana-Nogues M, Albala-Hurtado S, Marine-Font A, Vidal-Carou M (1996) Changes in biogenic amines during the manufacture and storage of semipreserved anchovies. J Food Prot 59:1218–1222

    CAS  PubMed  Google Scholar 

  • Wallrabenstein I, Kuklan J, Weber L, Zborala S, Werner M, Altmuller J, Becker C, Schmidt A, Hatt H, Hummel T (2013) Human trace amine-associated receptor TAAR5 can be activated by trimethylamine. PLoS One 8:e54950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallrabenstein I, Singer M, Panten J, Hatt H, Gisselmann G, Touhara K (2015) Timberol® inhibits TAAR5-mediated responses to trimethylamine and influences the olfactory threshold in humans. PLOS ONE 10(12):e0144704

  • Xu Z, Li Q (2020) TAAR agonists. Cell Mol Neurobiol 40:257–272

    CAS  PubMed  Google Scholar 

  • Yoon K, Ragoczy T, Lu Z, Kondoh K, Kuang D, Groudine M, Buck L (2015) Olfactory receptor genes expressed in distinct lineages are sequestered in different nuclear compartments. Proc Natl Acad Sci 112:E2403–E2409

    CAS  PubMed  Google Scholar 

  • Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33:3228–3239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zucchi R, Chiellin G, Scalan T, Grandy D (2006) Trace amine-associated receptors and their ligands. Br J Pharmacol 149:967–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zufall F, Munger S (2010) Receptor guanylyl cyclases in mammalian olfactory function. Mol Cell Biochem 334:191–197

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Annika Cichy and Thomas Bozza for their input on the manuscript and Charles Badlands for graphic design support.

Funding

This work was supported by the National Institute of Health [grant number: DC014565].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Dewan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewan, A. Olfactory signaling via trace amine-associated receptors. Cell Tissue Res 383, 395–407 (2021). https://doi.org/10.1007/s00441-020-03331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03331-5

Keywords

Navigation