Skip to main content

Deorphanization of Olfactory Trace Amine-Associated Receptors

  • Protocol
  • First Online:
Olfactory Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1820))

Abstract

Olfaction is the primary sense used by most animals to perceive the external world. The mouse olfactory system is composed of several sensory structures, the largest of which is the main olfactory epithelium (MOE). Olfactory sensory neurons (OSNs) located within the MOE detect odors and pheromones using dedicated seven-transmembrane G protein-coupled receptors (GPCRs). Two families of GPCRs are expressed in the MOE and are conserved in humans and other vertebrates: odorant receptors (ORs) and trace amine-associated receptors (TAARs). TAARs are distantly related to biogenic amine receptors, such as dopamine and serotonin receptors. Several TAARs detect volatile amines including ethological odors that evoke innate animal behavioral responses. Mouse TAAR4 recognizes the aversive predator odor 2-phenylethylamine, while mouse TAAR5 detects the attractive male mouse odor trimethylamine. In zebrafish, TAAR13c detects the foul death-associated odor cadaverine that mediates innate avoidance behavior. TAARs thus provide an excellent model subsystem to study odor valence. And identification of additional high-affinity ligands for TAARs will provide extra tools for such study. Therefore, this chapter focuses on the so-called SEAP assay that has been successfully applied for TAAR deorphanization in different species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liberles SD (2015) Trace amine-associated receptors: ligands, neural circuits, and behaviors. Curr Opin Neurobiol 34C:1–7. https://doi.org/10.1016/j.conb.2015.01.001

    Article  CAS  Google Scholar 

  2. Horowitz LF, Saraiva LR, Kuang D, Yoon KH, Buck LB (2014) Olfactory receptor patterning in a higher primate. J Neurosci 34(37):12241–12252. https://doi.org/10.1523/JNEUROSCI.1779-14.2014

    Article  PubMed  CAS  Google Scholar 

  3. Hussain A, Saraiva LR, Korsching SI (2009) Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc Natl Acad Sci U S A 106(11):4313–4318. https://doi.org/10.1073/pnas.0803229106

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442(7103):645–650. https://doi.org/10.1038/nature05066

    Article  CAS  PubMed  Google Scholar 

  5. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A 98(16):8966–8971. https://doi.org/10.1073/pnas.151105198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60(6):1181–1188

    Article  CAS  PubMed  Google Scholar 

  7. Ferrero DM, Lemon JK, Fluegge D, Pashkovski SL, Korzan WJ, Datta SR, Spehr M, Fendt M, Liberles SD (2011) Detection and avoidance of a carnivore odor by prey. Proc Natl Acad Sci U S A 108:11235. https://doi.org/10.1073/pnas.1103317108

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ferrero DM, Wacker D, Roque MA, Baldwin MW, Stevens RC, Liberles SD (2012) Agonists for 13 trace amine-associated receptors provide insight into the molecular basis of odor selectivity. ACS Chem Biol 7:1184. https://doi.org/10.1021/cb300111e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Li Q, Korzan WJ, Ferrero DM, Chang RB, Roy DS, Buchi M, Lemon JK, Kaur AW, Stowers L, Fendt M, Liberles SD (2013) Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr Biol 23(1):11–20. https://doi.org/10.1016/j.cub.2012.10.047

    Article  PubMed  CAS  Google Scholar 

  10. Li Q, Tachie-Baffour Y, Liu Z, Baldwin MW, Kruse AC, Liberles SD (2015) Non-classical amine recognition evolved in a large clade of olfactory receptors. eLife 4. https://doi.org/10.7554/eLife.10441

  11. Wallrabenstein I, Kuklan J, Weber L, Zborala S, Werner M, Altmuller J, Becker C, Schmidt A, Hatt H, Hummel T, Gisselmann G (2013) Human trace amine-associated receptor TAAR5 can be activated by Trimethylamine. PLoS One 8(2):e54950. https://doi.org/10.1371/journal.pone.0054950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Saraiva LR, Kondoh K, Ye X, Yoon KH, Hernandez M, Buck LB (2016) Combinatorial effects of odorants on mouse behavior. Proc Natl Acad Sci U S A 113:E3300. https://doi.org/10.1073/pnas.1605973113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pacifico R, Dewan A, Cawley D, Guo C, Bozza T (2012) An olfactory subsystem that mediates high-sensitivity detection of volatile amines. Cell Rep 2(1):76–88. https://doi.org/10.1016/j.celrep.2012.06.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33(7):3228–3239. https://doi.org/10.1523/JNEUROSCI.4299-12.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dewan A, Pacifico R, Zhan R, Rinberg D, Bozza T (2013) Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497:486. https://doi.org/10.1038/nature12114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hussain A, Saraiva LR, Ferrero DM, Ahuja G, Krishna VS, Liberles SD, Korsching SI (2013) High-affinity olfactory receptor for the death-associated odor cadaverine. Proc Natl Acad Sci U S A 110(48):19579–19584. https://doi.org/10.1073/pnas.1318596110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dolphin CT, Janmohamed A, Smith RL, Shephard EA, Phillips IR (1997) Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 17(4):491–494. https://doi.org/10.1038/ng1297-491

    Article  PubMed  CAS  Google Scholar 

  18. Durocher Y, Perret S, Thibaudeau E, Gaumond MH, Kamen A, Stocco R, Abramovitz M (2000) A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal Biochem 284(2):316–326. https://doi.org/10.1006/abio.2000.4698

    Article  PubMed  CAS  Google Scholar 

  19. Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119(5):679–691. https://doi.org/10.1016/j.cell.2004.11.021

    Article  PubMed  CAS  Google Scholar 

  20. Zhuang H, Matsunami H (2007) Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem 282(20):15284–15293. https://doi.org/10.1074/jbc.M700386200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (to Q.L., award number 31771154), Shanghai Pujiang Program (to Q.L., award number 17PJ1405400), and Fundamental Research Funds for the Central Universities (Shanghai Jiao Tong University, to Q.L., award number 17X100040037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, Q. (2018). Deorphanization of Olfactory Trace Amine-Associated Receptors. In: Simoes de Souza, F., Antunes, G. (eds) Olfactory Receptors. Methods in Molecular Biology, vol 1820. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8609-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8609-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8608-8

  • Online ISBN: 978-1-4939-8609-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics