Skip to main content
Log in

Chicken GRIFIN: binding partners, developmental course of localization and activation of its lens-specific gene expression by L-Maf/Pax6

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tissue lectins appear to be involved in a broad range of physiological processes, as reflected for the members of the family of galectins by referring to them as adhesion/growth-regulatory effectors. In order to clarify the significance of galectin presence, key challenges are to define their binding partners and the profile of localization. Having identified the chicken galectin-related interfiber protein (C-GRIFIN) as lens-specific protein present in the main body of adult lens, we here report its interaction with lens proteins in ligand blotting. The assumption for pairing with α-, β- and δ-crystallins was ascertained by mass spectrometric detection of their presence in eluted fractions obtained by affinity chromatography. Biochemical and immunohistochemical monitoring revealed protein presence from about 3-day-old embryos onwards, mostly in the cytoplasm of elongated posterior cells, later in secondary lens fiber cells. On the level of gene expression, its promoter was activated by transcription factor L-Maf alone and together with Pax6 like a crystallin gene, substantiating C-GRIFIN’s status as lens-specific galectin. Using this combined strategy for counterreceptor and expression profiling by bio- and histochemical methods including light, electron and fluorescence microscopy, respective monitoring in lens development can now be taken to the level of the complete galectin family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed H, Vasta GR (2008) Unlike mammalian GRIFIN, the zebrafish homologue (DrGRIFIN) represents a functional carbohydrate-binding galectin. Biochem Biophys Res Commun 371:350–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akahani S, Nangia-Makker P, Inohara H, Kim H-RC, Raz A (1997) Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res 57:5272–5276

    CAS  PubMed  Google Scholar 

  • Barton KA, Hsu CD, Petrash JM (2009) Interactions between small heat shock protein α-crystallin and galectin-related interfiber protein (GRIFIN) in the ocular lens. Biochemistry 48:3956–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassnett S, Shi Y, Vrensen GF (2011) Biological glass: structural determinants of eye lens transparency. Phil Trans R Soc B 366:1250–1264

    Article  PubMed  Google Scholar 

  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407–485

    Article  CAS  PubMed  Google Scholar 

  • Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T, Choi SW, Peters R, Mandell M, Bruun JA, Johansen T, Deretic V (2016) TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell 39:13–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sagar V, Len HS, Peterson K, Fan J, Mishra S, McMurtry J, Wilmarth PA, David LL, Wistow G (2016) γ-Crystallins of the chicken lens: remnants of an ancient vertebrate gene family in birds. FEBS J 283:1516–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu ML, Parry DAD, Feldman SR, Klapper DG, O'Keefe EJ (1994) An adherens junction protein is a member of the family of lactose-binding lectins. J Biol Chem 269:31770–31776

    CAS  PubMed  Google Scholar 

  • Chow RL, Lang RA (2001) Early eye development in vertebrates. Annu Rev Cell Dev Biol 17:255–296

    Article  CAS  Google Scholar 

  • Clark AR, Lubsen NH, Slingsby C (2012) sHSP in the eye lens: crystallin mutations, cataract and proteostasis. Int J Biochem Cell Biol 44:1687–1697

    Article  CAS  PubMed  Google Scholar 

  • Cooper DNW (2002) Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572:209–231

    Article  CAS  PubMed  Google Scholar 

  • Cvekl A, Sax CM, Bresnick EH, Piatigorsky J (1994) A complex array of positive and negative elements regulates the chicken αA-crystallin gene: involvement of Pax-6, USF, CREB and/or CREM, and AP-1 proteins. Mol Cell Biol 14:7363–7376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cvekl A, Sax CM, Li X, McDermott JB, Piatigorsky J (1995) Pax-6 and lens-specific transcription of the chicken δ1-crystallin gene. Proc Natl Acad Sci U S A 92:4681–4685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahm R, Branmke S, Dawczynski J, Nagaraj RH, Kasper M (2003) Developmental aspects of galectin expression in the lens. Histochem Cell Biol 119:219–226

    CAS  PubMed  Google Scholar 

  • Den H, Malinzak DA (1977) Isolation and properties of β-d-galactoside-specific lectin from chick embryo thigh muscle. J Biol Chem 252:5444–5448

    CAS  PubMed  Google Scholar 

  • Einhoff W, Fleischmann G, Freier T, Kummer H, Rüdiger H (1986) Interactions between lectins and other components of leguminous protein bodies. Biol Chem Hoppe Seyler 367:15–25

    Article  CAS  PubMed  Google Scholar 

  • Eisenbarth GS, Ruffolo RR Jr, Walsh FS, Nirenberg M (1978) Lactose-sensitive lectin of chick retina and spinal cord. Biochem Biophys Res Commun 83:1246–1252

  • Falcon B, Noad J, McMahon H, Randow F, Goedert M (2018) Galectin-8-mediated selective autophagy protects against seeded tau aggregation. J Biol Chem 293:2438–2451

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-Cornwell MC, Veneziale RW, Grunwald GB, Menko AS (2000) N-Cadherin function is required for differentiation-dependent cytoskeletal reorganization in lens cells in vitro. Exp Cell Res 256:237–247

  • Flores-Ibarra A, Vértesy S, Medrano FJ, Gabius H-J, Romero A (2018) Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Sci Rep 8:9835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freier T, Rüdiger H (1987) In vivo binding partners of the Lens culinaris lectin. Biol Chem Hoppe Seyler 368:1215–1223

  • Gabius H-J (1997) Animal lectins. Eur J Biochem 243:543–576

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J (2017) How to crack the sugar code. Folia Biol (Praha) 63:121–131

    Google Scholar 

  • Gabius H-J, Wosgien B, Hendrys M, Bardosi A (1991) Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. Histochemistry 95:269–277

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, Manning JC, Kopitz J, André S, Kaltner H (2016) Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 73:1989–2016

    Article  CAS  PubMed  Google Scholar 

  • García Caballero G, Kaltner H, Michalak M, Shilova N, Yegres M, André S, Ludwig A-K, Manning JC, Schmidt S, Schnölzer M, Bovin NV, Reusch D, Kopitz J, Gabius H-J (2016a) Chicken GRIFIN: a homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie 128-129:34–47

    Article  CAS  PubMed  Google Scholar 

  • García Caballero G, Flores-Ibarra A, Michalak M, Khasbiullina N, Bovin NV, André S, Manning JC, Vértesy S, Ruiz FM, Kaltner H, Kopitz J, Romero A, Gabius H-J (2016b) Galectin-related protein: an integral member of the network of chicken galectins. 1. From strong sequence conservation of the gene confined to vertebrates to biochemical characteristics of the chicken protein and its crystal structure. Biochim Biophys Acta 1860:2285–2297

    Article  CAS  PubMed  Google Scholar 

  • García Caballero G, Manning JC, Ludwig A-K, Ruiz FM, Romero A, Kaltner H, Gabius H-J (2018) Members of the galectin network with deviations from the canonical sequence signature. 1. Galectin-Related Inter-Fiber Protein (GRIFIN). Trends Glycosci Glycotechnol 30:SE1–SE9

    Article  Google Scholar 

  • Gonen T, Donaldson P, Kistler J (2000) Galectin-3 is associated with the plasma membrane of lens fiber cells. Invest Ophthalmol Vis Sci 41:199–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonen T, Grey AC, Jacobs MD, Donaldson PJ, Kistler J (2001) MP20, the second most abundant lens membrane protein and member of the tetraspanin superfamily, joins the list of ligands of galectin-3. BMC Cell Biol 2:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grainger RM (1992) Embryonic lens induction: shedding light on vertebrate tissue determination. Trends Genet 8:349–355

    Article  CAS  PubMed  Google Scholar 

  • Graw J (2009) Genetics of crystallins: cataract and beyond. Exp Eye Res 88:173–189

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272

    Article  CAS  Google Scholar 

  • Harrison FL, Chesterton CJ (1980) Factors mediating cell-cell recognition and adhesion. Galaptins, a recently discovered class of bridging molecules. FEBS Lett 122:157–165

  • Hong M-H, Weng I-C, Liu F-T (2018) Galectins as intracellular regulators of cellular responses through the detection of damaged endocytic vesicles. Trends Glycosci Glycotechnol 30:SE179–SE184

    Article  Google Scholar 

  • Houzelstein D, Gonçalves IR, Fadden AJ, Sidhu SS, Cooper DNW, Drickamer K, Leffler H, Poirier F (2004) Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol 21:1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Hrdlicková-Cela E, Plzak J, Smetana K Jr, Mélková Z, Kaltner H, Filipec M, Liu F-T, Gabius H-J (2001) Detection of galectin-3 in tear fluid at disease states and immunohistochemical and lectin histochemical analysis in human corneal and conjunctival epithelium. Br J Ophthalmol 85:1336–1340

  • Inoue T, Miyazaki J, Hirabayashi T (1992) Accumulation of crystallin in developing chicken lens. Exp Eye Res 55:1–8

    Article  CAS  PubMed  Google Scholar 

  • Jiang K, Rankin CR, Nava P, Sumagin R, Kamekura R, Stowell SR, Feng M, Parkos CA, Nusrat A (2014) Galectin-3 regulates desmoglein-2 and intestinal epithelial intercellular adhesion. J Biol Chem 289:10510–10517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaltner H, Seyrek K, Heck A, Sinowatz F, Gabius H-J (2002) Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Comparison of cell type-specific expression profiles and subcellular localization. Cell Tissue Res 307:35–46

  • Kaltner H, Solís D, Kopitz J, Lensch M, Lohr M, Manning JC, Mürnseer M, Schnölzer M, André S, Sáiz JL, Gabius H-J (2008) Proto-type chicken galectins revisited: characterization of a third protein with distinctive hydrodynamic behaviour and expression pattern in organs of adult animals. Biochem J 409:591–599

    Article  CAS  PubMed  Google Scholar 

  • Kaltner H, Kübler D, López-Merino L, Lohr M, Manning JC, Lensch M, Seidler J, Lehmann WD, André S, Solís D, Gabius H-J (2011) Toward comprehensive analysis of the galectin network in chicken: unique diversity of galectin-3 and comparison of its localization profile in organs of adult animals to the other four members of this lectin family. Anat Rec 294:427–444

    Article  CAS  Google Scholar 

  • Kaltner H, García Caballero G, Sinowatz F, Schmidt S, Manning JC, André S, Gabius H-J (2016) Galectin-related protein: an integral member of the network of chicken galectins. 2. From expression profiling to its immunocyto- and histochemical localization and application as tool for ligand detection. Biochim Biophys Acta 1860:2298–2312

    Article  CAS  PubMed  Google Scholar 

  • Kaltner H, Toegel S, García Caballero G, Manning JC, Ledeen RW, Gabius H-J (2017) Galectins: their network and roles in immunity/tumor growth control. Histochem Cell Biol 147:239–256

    Article  CAS  PubMed  Google Scholar 

  • Kaltner H, García Caballero G, Ludwig A-K, Manning JC, Gabius H-J (2018a) From glycophenotyping by (plant) lectin histochemistry to defining functionality of glycans by pairing with endogenous lectins. Histochem Cell Biol 149:547–568

    Article  CAS  PubMed  Google Scholar 

  • Kaltner H, Manning JC, García Caballero G, Di Salvo C, Gabba A, Romero L, Knospe C, Wu D, Daly H, DF O’S, Gabius H-J, Murphy PV (2018b) Revealing biomedically relevant cell and lectin type-dependent structure-activity profiles for glycoclusters by using tissue sections as an assay platform. RSC Adv 8:28716–28735

    Article  CAS  Google Scholar 

  • Kasai K-i (2018) Galectins: quadruple-faced proteins. Trends Glycosci Glycotechnol 30:E221–E228

  • Kistler J, Gilbert K, Brooks HV, Jolly RD, Hopcroft DH, Bullivant S (1986) Membrane interlocking domains in the lens. Invest Ophthalmol Vis Sci 27:1527–1534

    CAS  PubMed  Google Scholar 

  • Kobiler D, Barondes SH (1977) Lectin activity from embryonic chick brain, heart and liver: changes with development. Dev Biol 60:326–330

    Article  CAS  PubMed  Google Scholar 

  • Kondoh H (1999) Transcription factors for lens development assessed in vivo. Curr Opin Genet Dev 9:301–308

    Article  CAS  PubMed  Google Scholar 

  • Kondoh H, Araki I, Yasuda K, Matsubasa T, Mori M (1991) Expression of the chicken 'δ2-crystallin' gene in mouse cells: evidence for encoding of argininosuccinate lyase. Gene 99:267–271

    Article  CAS  PubMed  Google Scholar 

  • Kopitz J, Xiao Q, Ludwig A-K, Romero A, Michalak M, Sherman SE, Zhou X, Dazen C, Vértesy S, Kaltner H, Klein ML, Gabius H-J, Percec V (2017) Reaction of a programmable glycan presentation of glycodendrimersomes and cells with engineered human lectins to show the sugar functionality of the cell surface. Angew Chem Int Ed 56:14677–14681

    Article  CAS  Google Scholar 

  • Kummer H, Rüdiger H (1988) Characterization of a lectin-binding storage protein from pea (Pisum sativum). Biol Chem Hoppe Seyler 369:639–646

    Article  CAS  PubMed  Google Scholar 

  • Kuszak JR (1995) The ultrastructure of epithelial and fiber cells in the crystalline lens. Int Rev Cytol 163:305–350

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Lam YC, Kistler J, Donaldson PJ (2005) Molecular characterization of the cystine/glutamate exchanger and the excitatory amino acid transporters in the rat lens. Invest Ophthalmol Vis Sci 46:2869–2877

    Article  PubMed  Google Scholar 

  • Liu F-T, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572:263–273

    Article  CAS  PubMed  Google Scholar 

  • Lo WK (1988) Adherens junctions in the ocular lens of various species: ultrastructural analysis with an improved fixation. Cell Tissue Res 254:31–40

    Article  CAS  PubMed  Google Scholar 

  • Manning JC, García Caballero G, Knospe C, Kaltner H, Gabius H-J (2017a) Network analysis of adhesion/growth-regulatory galectins and their binding sites in adult chicken retina and choroid. J Anat 231:23–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning JC, Romero A, Habermann FA, García Caballero G, Kaltner H, Gabius H-J (2017b) Lectins: a primer for histochemists and cell biologists. Histochem Cell Biol 147:199–222

    Article  CAS  PubMed  Google Scholar 

  • Manning JC, García Caballero G, Knospe C, Kaltner H, Gabius H-J (2018a) Three-step monitoring of glycan and galectin profiles in the anterior segment of the adult chicken eye. Ann Anat 217:66–81

    Article  PubMed  Google Scholar 

  • Manning JC, García Caballero G, Ruiz FM, Romero A, Kaltner H, Gabius H-J (2018b) Members of the galectin network with deviations from the canonical sequence signature, 2. Galectin-related protein (GRP). Trends Glycosci Glycotechnol 30:SE11–SE20

    Article  Google Scholar 

  • Michalak M, Warnken U, André S, Schnölzer M, Gabius H-J, Kopitz J (2017) Detection of proteome changes in human colon cancer induced by cell surface binding of growth-inhibitory galectin-4 using quantitative SILAC-based proteomics. J Proteome Res 15:4412–4422

    Article  CAS  Google Scholar 

  • Miller MC, Ludwig A-K, Wichapong K, Kaltner H, Kopitz J, Gabius H-J, Mayo KH (2018) Adhesion/growth-regulatory galectins tested in combination: evidence for formation of hybrids as heterodimers. Biochem J 475:1003–1018

    Article  CAS  PubMed  Google Scholar 

  • Nowak TP, Kobiler D, Roel LE, Barondes SH (1977) Developmentally regulated lectin from embryonic chick pectoral muscle. J Biol Chem 252:6026–6030

    CAS  PubMed  Google Scholar 

  • Ogden AT, Nunes I, Ko K, Wu S, Hines CS, Wang AF, Hegde RS, Lang RA (1998) GRIFIN, a novel lens-specific protein related to the galectin family. J Biol Chem 273:28889–28896

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Yasuda K (1998) Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280:115–118

    Article  CAS  PubMed  Google Scholar 

  • Parker DS, Wawrousek EF, Piatigorsky J (1988) Expression of the δ-crystallin genes in the embryonic chicken lens. Dev Biol 126:375–381

    Article  CAS  PubMed  Google Scholar 

  • Piatigorsky J (1981) Lens differentiation in vertebrates. Differentiation 19:134–153

    Article  CAS  PubMed  Google Scholar 

  • Piatigorsky J, Wistow GJ (1989) Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell 57:197–199

    Article  CAS  PubMed  Google Scholar 

  • Plzák J, Holíková Z, Smetana K Jr, Dvoránková B, Hercogová J, Kaltner H, Motlík J, Gabius H-J (2002) Differentiation-dependent glycosylation of cells in squamous cell epithelia detected by a mammalian lectin. Cells Tissues Organs 171:135–144

  • Reza HM, Yasuda K (2004) Roles of Maf family proteins in lens development. Dev Dyn 229:440–448

    Article  CAS  PubMed  Google Scholar 

  • Reza HM, Ogino H, Yasuda K (2002) L-Maf, a downstream target of Pax6, is essential for chick lens development. Mech Dev 116:61–73

    Article  CAS  PubMed  Google Scholar 

  • Reza HM, Urano A, Shimada N, Yasuda K (2007) Sequential and combinatorial roles of maf family genes define proper lens development. Mol Vis 13:18–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rüdiger H, Gabius H-J (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613

    Article  Google Scholar 

  • Ruiz FM, Gilles U, Ludwig A-K, Sehad C, Shiao TC, García Caballero G, Kaltner H, Lindner I, Roy R, Reusch D, Romero A, Gabius H-J (2018) Chicken GRIFIN: structural characterization in crystals and in solution. Biochimie 146:127–138

    Article  CAS  PubMed  Google Scholar 

  • Schecher G, Rüdiger H (1994) Interaction of the soybean (Glycine max) seed lectin with components of the soybean protein body membrane. Biol Chem Hoppe Seyler 375:829–832

    CAS  PubMed  Google Scholar 

  • Slingsby C, Wistow GJ, Clark AR (2013) Evolution of crystallins for a role in the vertebrate eye lens. Protein Sci 22:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub BK, Boda J, Kuhn C, Schnoelzer M, Korf U, Kempf T, Spring H, Hatzfeld M, Franke WW (2003) A novel cell-cell junction system: the cortex adhaerens mosaic of lens fiber cells. J Cell Sci 116:4985–4995

    Article  CAS  PubMed  Google Scholar 

  • Teichberg VI, Silman I, Beitsch DD, Resheff G (1975) A β-d-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci U S A 72:1383–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda Y, Fukiage C, Shih M, Shearer TR, David LL (2002) Mass measurements of C-terminally truncated α-crystallins from two-dimensional gels identify Lp82 as a major endopeptidase in rat lens. Mol Cell Proteomics 1:357–365

    Article  CAS  PubMed  Google Scholar 

  • Wang-Su ST, McCormack AL, Yang S, Hosler MR, Mixon A, Riviere MA, Wilmarth PA, Andley UP, Garland D, Li H, David LL, Wagner BJ (2003) Proteome analysis of lens epithelia, fibers, and the HLE B-3 cell line. Invest Ophthalmol Vis Sci 44:4829–4836

    Article  PubMed  Google Scholar 

  • Wasano K, Hirakawa Y (1995) Rat intestinal galactoside-binding lectin L36 functions as a structural protein in the superficial squamous cells of the esophageal epithelium. Cell Tissue Res 281:77–83

    Article  CAS  PubMed  Google Scholar 

  • Wenzel M, Gers-Barlag H, Schimpl A, Rüdiger H (1993) Time course of lectin and storage protein biosynthesis in developing pea (Pisum sativum) seeds. Biol Chem Hoppe Seyler 374:887–894

    Article  CAS  PubMed  Google Scholar 

  • Wistow G (1993) Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci 18:301–306

    Article  CAS  PubMed  Google Scholar 

  • Wistow GJ, Piatigorsky J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57:479–504

    Article  CAS  PubMed  Google Scholar 

  • Wittrup A, Ai A, Liu X, Hamar P, Trifonova R, Charisse K, Manoharan M, Kirchhausen T, Lieberman J (2015) Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol 33:870–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Q, Ludwig AK, Romano C, Buzzacchera I, Sherman SE, Vetro M, Vértesy S, Kaltner H, Reed EH, Moller M, Wilson CJ, Hammer DA, Oscarson S, Klein ML, Gabius H-J, Percec V (2018) Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc Natl Acad Sci U S A 115:E2509–E2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R-Y, Hsu DK, Liu F-T (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A 93:6737–6742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Yasuda K (2002) Characterization of the chicken L-Maf, MafB and c-Maf in crystallin gene regulation and lens differentiation. Genes Cells 7:693–706

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Zhang M, Zhang L, Ding X, Li W, Lu S (2018) HSPC159 promotes proliferation and metastasis by inducing epithelial-mesenchymal transition and activating the PI3K/Akt pathway in breast. Cancer Sci 109:2153–2163

Download references

Acknowledgements

We are grateful to Drs. B. Friday and A. Leddoz for inspiring discussions as well as for the valuable input of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jürgen Kopitz or Hans-Joachim Gabius.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 204 kb)

ESM 2

(PDF 5402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Caballero, G., Schmidt, S., Schnölzer, M. et al. Chicken GRIFIN: binding partners, developmental course of localization and activation of its lens-specific gene expression by L-Maf/Pax6. Cell Tissue Res 375, 665–683 (2019). https://doi.org/10.1007/s00441-018-2931-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2931-x

Keywords

Navigation