Cell and Tissue Research

, Volume 349, Issue 2, pp 447–458 | Cite as

Amniotic membrane: from structure and functions to clinical applications

  • A. C. Mamede
  • M. J. Carvalho
  • A. M. Abrantes
  • M. Laranjo
  • C. J. Maia
  • M. F. Botelho
Review

Abstract

Amniotic membrane (AM) or amnion is a thin membrane on the inner side of the fetal placenta; it completely surrounds the embryo and delimits the amniotic cavity, which is filled by amniotic liquid. In recent years, the structure and function of the amnion have been investigated, particularly the pluripotent properties of AM cells, which are an attractive source for tissue transplantation. AM has anti-inflammatory, anti-bacterial, anti-viral and immunological characteristics, as well as anti-angiogenic and pro-apoptotic features. AM is a promoter of epithelialization and is a non-tumorigenic tissue and its use has no ethical problems. Because of its attractive properties, AM has been applied in several surgical procedures related to ocular surface reconstruction and the genito-urinary tract, skin, head and neck, among others. So far, the best known and most auspicious applications of AM are ocular surface reconstruction, skin applications and tissue engineering. However, AM can also be applied in oncology. In this area, AM can prevent the delivery of nutrients and oxygen to cancer cells and consequently interfere with tumour angiogenesis, growth and metastasis.

Keywords

Amniotic membrane Ocular surface reconstruction Skin Tissue engineering Oncology 

References

  1. Adinolfi M, Akle C, McColl I, Fensom A, Tansley L, Connolly P, His B, Faulk W, Travers P, Bodmer W (1982) Expression of HLA antigens, [beta]2-microglobulin and enzymes by human amniotic epithelial cells. Nature 295:325–327PubMedCrossRefGoogle Scholar
  2. Akashi T, Miyagi T, Ando N, Suzuki Y, Nemoto T, Eishi Y, Nakamura K, Shirasawa T, Osa N, Tanaka N, Burgeson R (1999) Synthesis of basement membrane by gastrointestinal cancer cell lines. J Pathol 187:223–228PubMedCrossRefGoogle Scholar
  3. Akle C, Welsh K, Adinolfi M, Leibowitz S, Mccoll I (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 318:1003–1005CrossRefGoogle Scholar
  4. Amer M, Abd-El-Maeboud K (2006) Amnion graft following hysteroscopic lysis of intrauterine adhesions. J Obstet Gynaecol Res 32:559–566PubMedCrossRefGoogle Scholar
  5. Baradaran-Rafii A, Arjmand B, Javadi M (2007) Amniotic membrane transplantation. Iran J Ophthal Res 2:58–75Google Scholar
  6. Bari M, Choudhury M, Khan A, Nessa A (2002) Role of human fetal membranes (amniotic membrane) in the management of burn wounds. Ann Burn Fire Disasters 15:12–16Google Scholar
  7. Benedetti WL, Sala MA, Alvarez H (1973) Histochemical demonstration of enzymes in the umbilical cord and membranes of human term pregnancy. Eur J Obstet Gynecol Reprod Biol 3:185–189CrossRefGoogle Scholar
  8. Benedetto M, De Cicco F, Rossiello F, Nicosia A, Lupi G, Dell Acqua S (1990) Oxytocin receptor in human fetal membranes at term and during labor. J Steroid Biochem 35:205–208PubMedCrossRefGoogle Scholar
  9. Benirschke K (2000) Pathology of the human placenta. Springer, New YorkGoogle Scholar
  10. Boudreau N, Sympson C, Werb Z, Bissell M (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893PubMedCrossRefGoogle Scholar
  11. Bourne G (1960) The microscopic anatomy of the human amnion and chorion. Am J Obstet Gynecol 79:1070–1073PubMedGoogle Scholar
  12. Bryant-Greenwood G, Rees M, Turnbull A (1987) Immunohistochemical localization of relaxin, prolactin and prostaglandin synthase in human amnion, chorion and decidua. J Endocrinol 114:491–496PubMedCrossRefGoogle Scholar
  13. Buhimschi I, Jabr M, Buhimschi C, Petkova A, Weiner C, Saed G (2004) The novel antimicrobial peptide β3- defensin is produced by the amnion: a possible role of the fetal membranes in innate immunity of the amniotic cavity. Am J Obstet Gynecol 191:1678–1687PubMedCrossRefGoogle Scholar
  14. Burman S, Tejwani S, Vemuganti G, Gopinathan U, Sangwan V (2004) Ophthalmic applications of preserved human amniotic membrane: a review of current indications. Cell Tissue Bank 5:161–175PubMedCrossRefGoogle Scholar
  15. Bussink J, Kaander J, Kogel A van der (2003) Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67:3–15PubMedCrossRefGoogle Scholar
  16. Capeáns C, Piñeiro A, Pardo M, Sueiro-López C, Blanco M, Domínguez F, Sánchez-Salorio M (2003) Amniotic membrane as support for human retinal pigment epithelium (RPE) cell growth. Acta Ophthalmol Scand 81:271–277PubMedCrossRefGoogle Scholar
  17. Cheung P, Walton J, Tai H, Riley S, Challis J (1990) Immunocytochemical distribution and localization of 15- hydroxyprostaglandin dehydrogenase in human fetal membranes, decidua, and placenta. Am J Obstet Gynecol 163:1445–1449PubMedGoogle Scholar
  18. Choi T, Tseng S (2001) In vivo and in vitro demonstration of epithelial cell-induced myofibroblast differentiation of keratocytes and an inhibitory effect by amniotic membrane. Cornea 20:197–204PubMedCrossRefGoogle Scholar
  19. Cooper G, Hausman R (2003) The cell: a molecular approach. American Socity for Microbiology, WashingtonGoogle Scholar
  20. Crescimanno C (1993) Immunocytochemical patterns of carbonic anhydrase isoenzymes in human placenta, cord and membranes. Placenta 14:A11CrossRefGoogle Scholar
  21. Cunningham F (2001) Williams obstetrics. Slock, LondonGoogle Scholar
  22. Danforth D, Hull R (1958) The microscopic anatomy of the fetal membranes with particular reference to the detailed structure of the amnion. Am J Obstet Gynecol 75:536–547PubMedGoogle Scholar
  23. Davis J (1910) Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J 15:307Google Scholar
  24. Dua H, Gomes J, King A, Maharajan V (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77PubMedCrossRefGoogle Scholar
  25. Enders A, King B (1988) Formation and differentiation of extraembryonic mesoderm in the rhesus monkey. Am J Anat 181:327–340PubMedCrossRefGoogle Scholar
  26. Fatima A, Balasubramanian D, Iftekhar G, Vemuganti G, Matalia H, Reddy P, Sangwan V (2006) Technique of cultivating limbal derived corneal epithelium on human amniotic membrane for clinical transplantation. J Postgrad Med 52:257–261PubMedGoogle Scholar
  27. Fernandes M, Sridhar M, Sangwan V, Rao G (2005) Amniotic membrane transplantation for ocular surface reconstruction. Cornea 24:643–653PubMedCrossRefGoogle Scholar
  28. Fukuda K, Chikama T, Nakamura M, Nishida T (1999) Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the AM, cornea, and conjunctiva. Cornea 18:73–79PubMedCrossRefGoogle Scholar
  29. Gibb W, Lavoie J (1990) Effects of glucocorticoids on prostaglandin formation by human amnion. Can J Physiol Pharmacol 68:671–676PubMedCrossRefGoogle Scholar
  30. Gomes J, Romano A, Santos M, Dua H (2005) Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol 16:233–240PubMedCrossRefGoogle Scholar
  31. Guo M, Grinnell F (1989) Basement membrane and human epidermal differentiation in vitro. J Invest Dermatol 93:372–378PubMedCrossRefGoogle Scholar
  32. Hajiiski O (1990) Amniotic membranes for temporary burn coverage. Ann Burn Fire Disasters 9:88–92Google Scholar
  33. Hammer A, Hutter H, Blaschitz A, Mahnert W, Hartmann M, Uchanska-Ziegler B, Ziegler A, Dohr G (1997) Amnion epithelial cells, in contrast to trophoblast cells, express all classical HLA class I molecules together with HLA-G. Am J Reprod Immunol 37:161–171PubMedCrossRefGoogle Scholar
  34. Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  35. Hao Y, Ma D, Hwang D, Kim W, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human AM. Cornea 19:348–352PubMedCrossRefGoogle Scholar
  36. Harder J, Meyer-Hoffert U, Teran L, Schwichtenberg L, Bartels J, Maune S, Schroder J (2000) Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 22:714–721PubMedGoogle Scholar
  37. Herendael B van, Oberti C, Brosens I (1978) Microanatomy of the human amniotic membranes. A light microscopic, transmission, and scanning electron microscopic study. Am J Obstet Gynecol 131:872–880PubMedGoogle Scholar
  38. Higa K, Shimmura S, Shimazaki J, Tsubota K (2005) Hyaluronic acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea 24:206–212PubMedCrossRefGoogle Scholar
  39. Houlihan J, Biro P, Harper H, Jenkinson H, Holmes C (1995) The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G. J Immunol 154:5665–5674PubMedGoogle Scholar
  40. Ishino Y, Sano Y, Nakamura T, Connon C, Rigby H, Fullwood N, Kinoshita S (2004) Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci 45:800–806PubMedCrossRefGoogle Scholar
  41. Jin C, Park S, Choi B, Lee K, Kang C, Min B (2007) Human amniotic membrane as a delivery matrix for articular cartilage repair. Tissue Eng 13:693–702PubMedCrossRefGoogle Scholar
  42. Jones S, Challis J (1989) Local stimulation of prostaglandin production by corticotropin-releasing hormone in human fetal membranes and placenta. Biochem Biophys Res Commun 159:192–199PubMedCrossRefGoogle Scholar
  43. Kakishita K, Elwan M, Nakao N, Itakura T, Sakuragawa N (2000) Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol 165:27–34PubMedCrossRefGoogle Scholar
  44. Kamiya K, Wang M, Uchida S, Amano S, Oshika T, Sakuragawa N, Hori J (2005) Topical application of culture supernatant from human amniotic epithelial cells suppresses inflammatory reactions in cornea. Exp Eye Res 80:671–679PubMedCrossRefGoogle Scholar
  45. Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, Ogawa Y, Toyamad Y, Miyata T, Okano H (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22:139–153PubMedCrossRefGoogle Scholar
  46. Kanyshkova T, Buneva V, Nevinsky G (2001) Lactoferrin and its biological functions. Biochemistry (Mosc) 66:1–7CrossRefGoogle Scholar
  47. Kasahara H, Usheva A, Ueyama T, Aoki H, Horikoshi N, Izumo S (2001) Characterization of homo- and heterodimerization of cardiac Csx/Nkx2.5 homeoprotein. J Biol Chem 276:4570–4580PubMedCrossRefGoogle Scholar
  48. Keelan J, Sato T, Mitchell M (1997) Interleukin (IL)-6 and IL-8 production by human amnion: regulation by cytokines, growth factors, glucocorticoids, phorbol esters, and bacterial lipopolysaccharide. Biol Reprod 57:1438–1444PubMedCrossRefGoogle Scholar
  49. Keelan J, Sato T, Hansen W, Gilmour J, Gupta D, Helsby N, Mitchell M (1999) Interleukin-4 differentially regulates prostaglandin production in amnion-derived WISH cells stimulated with pro-inflammatory cytokines and epidermal growth factor. Prostaglandins Leukot Essent Fatty Acids 60:255–262PubMedCrossRefGoogle Scholar
  50. Khouw I, Wachem P van, Plantinga J, Vujaskovic Z, Wissink M, Leij L de, Luyn M van (1999) TGF-[beta] and bFGF affect the differentiation of proliferating porcine fibroblasts into myofibroblasts in vitro. Biomaterials 20:1815–1822PubMedCrossRefGoogle Scholar
  51. Kim J, Tseng S (1995a) The effects on inhibition of corneal neovascularization after human AM transplantation in severely damaged rabbit corneas. Korean J Ophthalmol 9:32–46PubMedGoogle Scholar
  52. Kim J, Tseng S (1995b) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14:473–484PubMedCrossRefGoogle Scholar
  53. Kim J, Kim J, Na B, Jeong J, Song C (2000) Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res 70:329–337PubMedCrossRefGoogle Scholar
  54. King A, Critchley H, Sallenave J, Kelly R (2003) Elafin in human endometrium: an antiprotease and antimicrobial molecule expressed during menstruation. J Clin Endocrinol Metab 88:4426–4431PubMedCrossRefGoogle Scholar
  55. King A, Paltoo A, Kelly R, Sallenave J, Bocking A, Challis J (2007) Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 28:161–169PubMedCrossRefGoogle Scholar
  56. King B (1985) Related distribution and characterization of anionic sites in the basal lamina of developing human amniotic epithelium. Anat Rec 212:57–62PubMedCrossRefGoogle Scholar
  57. Knudson G (1993) Antioncogenes and human cancer. Proc Natl Acad Sci USA 90:10914–10921PubMedCrossRefGoogle Scholar
  58. Kobayashi N, Kabuyama Y, Sasaki S, Kato K, Homma Y (2002) Suppression of corneal neovascularization by culture supernatant of human amniotic cells. Cornea 21:62–67PubMedCrossRefGoogle Scholar
  59. Koizumi N, Inatomi T, Sotozono C, Fullwood N, Quantock A, Kinoshita S (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20:173–177PubMedCrossRefGoogle Scholar
  60. Koyano S, Fukui A, Uchida S, Yamada K, Asashima M, Sakuragawa N (2002) Synthesis and release of activin and noggin by cultured human amniotic epithelial cells. Dev Growth Differ 44:103–112PubMedCrossRefGoogle Scholar
  61. Krisanaprakornkit S, Weinberg A, Perez C, Dale B (1998) Expression of the peptide antibiotic human beta- defensin 1 in cultured gingival epithelial cells and gingival tissue. Infect Immun 66:4222–4228PubMedGoogle Scholar
  62. Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42:1539–1546PubMedGoogle Scholar
  63. Lee S, Tseng S (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123:303–312PubMedGoogle Scholar
  64. Lee S, Li D, Tan D, Meller D, Tseng S (2000) Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 20:325–334PubMedCrossRefGoogle Scholar
  65. Li H, Niederkorn J, Neelam S, Mayhew E, Word R, McCulley J, Alizadeh H (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46:900–907PubMedCrossRefGoogle Scholar
  66. Li W, He H, Kawakita T, Espana E, Tseng S (2006) Amniotic membrane induces apoptosis of interferon-[gamma] activated macrophages in vitro. Exp Eye Res 82:282–292PubMedCrossRefGoogle Scholar
  67. Mahgoub M, Ammar A, Fayez M, Edris A, Hazem A, Akl M, Hammam O (2004) Neovascularization of the amniotic membrane as a biological immune barrier. Transplant Proc 36:1194–1198PubMedCrossRefGoogle Scholar
  68. Mencucci R, Paladini I, Menchini U, Gicquel J, Dei R (2011) Inhibition of viral replication in vitro by antiviral-treated amniotic membrane. Possible use of amniotic membrane as drug-delivering tool. Br J Ophthalmol 95:28–31PubMedCrossRefGoogle Scholar
  69. Mermet I, Pottier N, Sainthillier J, Malugani C, Cairey-Remonnay S, Maddens S, Riethmuller D, Tiberghien P, Humbert P, Aubin F (2007) Use of amniotic membrane transplantation in the treatment of venous leg ulcers. Wound Repair Regen 15:459–464PubMedCrossRefGoogle Scholar
  70. Miki T, Lehmann T, Cai H, Stolz D, Strom S (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559PubMedCrossRefGoogle Scholar
  71. Miller J, Michel J, Bercovici B, Argaman M, Sacks T (1976) Studies on the antimicrobial activity of amniotic fluid. Am J Obstet Gynecol 125:212–214PubMedGoogle Scholar
  72. Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C (2002) Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res 63:591–600PubMedCrossRefGoogle Scholar
  73. Mohammad J, Shenaq J, Rabinovsky E, Shenaq S (2000) Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast Reconstr Surg 105:660–666PubMedCrossRefGoogle Scholar
  74. Muhlhauser J, Crescimanno C, Rajaniemi H, Parkkila S, Milovanov A, Castellucci M, Kaufmann P (1994) Immunohistochemistry of carbonic anhydrase in human placenta and fetal membranes. Histochemistry 101:91–98PubMedCrossRefGoogle Scholar
  75. Nakajima T, Enosawa S, Mitani T, Li X, Suzuki S, Amemiya H, Koiwai O, Sakuragawa N (2001) Cytological examination of rat amniotic epithelial cells and cell transplantation to the liver. Cell Transplant 10:423–427PubMedGoogle Scholar
  76. Ni J, Abrahamson M, Zhang M, Fernandez M, Grubb A, Su J, Yu G, Li Y, Parmelee D, Xing L, Coleman T, Gentz S, Thotakura R, Nguyen N, Hesselberg M, Gentz R (1997) Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins. J Biol Chem 272:10853–10858PubMedCrossRefGoogle Scholar
  77. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian A (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99PubMedGoogle Scholar
  78. Nishimura W, Kondo T, Salameh T, El Khattabi I, Dodge R, Bonner-Weir S, Sharma A (2006) A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev Biol 293:526–539PubMedCrossRefGoogle Scholar
  79. Ochsenbein-Kölble N, Jani J, Lewi L, Verbist G, Vercruysse L, Portmann-Lanz B, Marquardt K, Zimmermann R, Deprest J (2007) Enhancing sealing of fetal membrane defects using tissue engineered native amniotic scaffolds in the rabbit model. Am J Obstet Gynecol 196:263.e1-263.e7CrossRefGoogle Scholar
  80. Ogawa A, Terada S, Sakuragawa N, Masuda S, Nagao M, Miki M (2003) Progesterone, but not 17beta-estradiol, up-regulates erythropoietin (EPO) production in human amniotic epithelial cells. J Biosci Bioeng 96:448–453PubMedGoogle Scholar
  81. Okazaki T, Casey M, Okita J, MacDonald P, Johnston J (1981) Initiation of human parturition. XII. Biosynthesis and metabolism of prostaglandins in human fetal membranes and uterine decidua. Am J Obstet Gynecol 139:373–381PubMedGoogle Scholar
  82. Pabuçcu R, Atay V, Orhon E, Urman B, Ergün A (1997) Hysteroscopic treatment of intrauterine adhesions is safe and effective in the restoration of normal menstruation and fertility. Fertil Steril 68:1141–1143PubMedCrossRefGoogle Scholar
  83. Park W, Tseng S (2000) Modulation of acute inflammation and keratocyte death by suturing, blood, and amniotic membrane in PRK. Invest Ophthalmol Vis Sci 41:2906–2914PubMedGoogle Scholar
  84. Parry S, Strauss J (1998) Premature rupture of the fetal membranes. N Engl J Med 338:663–670PubMedCrossRefGoogle Scholar
  85. Perera F, Weinstein I (2000) Molecular epidemiology: recent advances and future directions. Carcinogenesis 21:517–524PubMedCrossRefGoogle Scholar
  86. Pollard S, Aye N, Symonds E (1976) Scanning electron microscope appearances of normal human amnion and umbilical cord at term. Br J Obstet Gynaecol 83:470–477PubMedCrossRefGoogle Scholar
  87. Portmann-Lanz C, Ochsenbein-Kölble N, Marquardt K, Lüthi U, Zisch A, Zimmermann R (2007) Manufacture of a cell-free amnion matrix scaffold that supports amnion cell outgrowth in vitro. Placenta 28:6–13PubMedCrossRefGoogle Scholar
  88. Robinson W, McFadden D, Barrett I, Kuchinka B, Peñaherrera M, Bruyère H, Best R, Pedreira D, Langlois S, Kalousek D (2002) Origin of amnion and implications for evaluation of the fetal genotype in cases of mosaicism. Prenat Diagn 22:1076–1085PubMedCrossRefGoogle Scholar
  89. Rote N (1993) Expression of IL-1 and IL-6 protein and mrna in amniochorionic membranes. Placenta 14:A63Google Scholar
  90. Rotth A (1940) Plastic repair of conjunctival defects with fetal membranes. Arch Ophthalmol 23:522–525CrossRefGoogle Scholar
  91. Rukstalis J, Ubeda M, Johnson M, Habener J (2006) Transcription factor snail modulates hormone expression in established endocrine pancreatic cell lines. Endocrinology 147:2997–3006PubMedCrossRefGoogle Scholar
  92. Runić R, Lockwood C, LaChapelle L, Dipasquale B, Demopoulos R, Kumar A, Guller S (1998) Apoptosis and Fas expression in human fetal membranes. J Clin Endocrinol Metab 83:660–666PubMedCrossRefGoogle Scholar
  93. Sabella N (1913) Use of the fetal membranes in skin grafting. Med Rec 83:478–480Google Scholar
  94. Sadler T (2000) Langmans medical embryology. Slock, LondonGoogle Scholar
  95. Sakuragawa N, Yoshikawa H, Sasaki M (1992) Amniotic tissue transplantation: clinical and biochemical evaluations for some lysosomal storage diseases. Brain Dev 14:7–11PubMedCrossRefGoogle Scholar
  96. Sakuragawaa N, Misawab H, Ohsugia K, Kakishitaa K, Ishiia T, Thangavela R, Tohyamaa J, Elwana M, Yokoyamac Y, Okudaa O, Araia H, Oginod I, Sato K (1997) Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett 232:53–56CrossRefGoogle Scholar
  97. Scaggiante B, Pineschi A, Sustersich M, Andolina M, Agosti E, Romeo D (1987) Successful therapy of Niemann-Pick disease by implantation of human amniotic membrane. Transplantation 44:59–61PubMedCrossRefGoogle Scholar
  98. Seo J, Kim Y, Kim J (2008) Properties of the amniotic membrane may be applicable in cancer therapy. Med Hypotheses 70:812–814PubMedCrossRefGoogle Scholar
  99. Shao C (2004) Suppression of corneal neovascularization by PEDF release from human amniotic membranes. Invest Ophthalmol Vis Sci 45:1758–1762PubMedCrossRefGoogle Scholar
  100. Shimazaki J, Shinozaki N, Tsubota K (1998) Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon. Br J Ophthalmol 82:235–240PubMedCrossRefGoogle Scholar
  101. Shimmura S, Shimazaki J, Ohashi Y, Tsubota K (2001) Antiinflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea 20:408–413PubMedCrossRefGoogle Scholar
  102. Shumway J, Al-Malt A, Amon E, Cohlan B, Amini S, Abboud M, Winn H (1999) Impact of oligohydramnios on maternal and perinatal outcomes of spontaneous premature rupture of the membranes at 18–28 weeks. J Matern Fetal Med 8:20–23PubMedCrossRefGoogle Scholar
  103. Sorsby A, Haythorne J, Reed H (1947) Further experience with amniotic membrane grafts in caustic burns of the eye. Br J Ophthalmol 31:409–418CrossRefGoogle Scholar
  104. Spicer S, Schulte B (1998) Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res 118:1–12PubMedCrossRefGoogle Scholar
  105. Stern M (1913) The grafting of preserved amniotic membranes to burned and ulcerated surfaces, substituting skin grafts. JAMA 60:973CrossRefGoogle Scholar
  106. Takashima S, Ise H, Zhao P, Akaike T, Nikaido T (2004) Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 29:73–84PubMedCrossRefGoogle Scholar
  107. Takashima S, Yasuo M, Sanzen N, Sekiguchi K, Okabe M, Yoshida T, Toda A, Nikaido T (2008) Characterization of laminin isoforms in human amnion. Tissue Cell 40:75–81PubMedCrossRefGoogle Scholar
  108. Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999) The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126:1269–1280PubMedGoogle Scholar
  109. Thadepalli H, Bach V, Davidson E (1978) Antimicrobial effect of amniotic fluid. Obstet Gynecol 52:198–204PubMedGoogle Scholar
  110. Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228PubMedCrossRefGoogle Scholar
  111. Toth P (1992a) Expression of hcg/lh receptor gene and its functional coupling to the regulation of cyclooxygenase-1 and −2 enzymes in human fetal membranes. Placenta 14:A78CrossRefGoogle Scholar
  112. Toth P (1992b) Direct novel regulation of cyclooxygenase (cox) and prostacyclin synthase (pgi2-s) by hCG in human amnion. Placenta 13:A63Google Scholar
  113. Toth P, Li X, Lei Z, Rao C (1996) Expression of human chorionic gonadotropin (hCG)/luteinizing hormone receptors and regulation of the cyclooxygenase-1 gene by exogenous hCG in human fetal membranes. J Clin Endocrinol Metab 81:1283–1288PubMedCrossRefGoogle Scholar
  114. Tsai S, Liu Y, Tang W, Zhou Z, Hwang C, Hwang G, Ou B, Hu C, Yang V, Chen J (2007) Characterization of porcine arterial endothelial cells cultured on amniotic membrane, a potential matrix for vascular tissue engineering. Biochem Biophys Res Commun 357:984–990PubMedCrossRefGoogle Scholar
  115. Tseng S, Prabhasawat P, Lee S (1997) Amniotic membrane transplantation for conjunctival surface reconstruction. Am J Ophthalmol 124:765–774PubMedGoogle Scholar
  116. Tseng S, Li D, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179:325–335PubMedCrossRefGoogle Scholar
  117. Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N (2000) Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res 62:585–590PubMedCrossRefGoogle Scholar
  118. Wang J (2004) The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic β-cell differentiation. Dev Biol 266:178–189PubMedCrossRefGoogle Scholar
  119. Wei J, Zhang T, Kawa S, Aizawa T, Ota M, Akaike T, Kato K, Konishi I, Nikaido T (2003) Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 12:545–552PubMedGoogle Scholar
  120. Weinberg R (1991) Tumor suppressor genes. Science 254:1138–1146PubMedCrossRefGoogle Scholar
  121. Wolf H, Desoye G (1993) Immunohistochemical localization of glucose transporters and insulin receptors in human fetal membranes at term. Histochemistry 100:379–385PubMedCrossRefGoogle Scholar
  122. Wolf H, Schmidt W, Drenckhahn D (1991) Immunocytochemical analysis of the cytoskeleton of the human amniotic epithelium. Cell Tissue Res 266:385–389PubMedCrossRefGoogle Scholar
  123. Yang L, Shirakata Y, Shudou M, Dai X, Tokumaru S, Hirakawa S, Sayama K, Hamuro J, Hashimoto K (2006) New skin-equivalent model from de-epithelialized amnion membrane. Cell Tissue Res 326:69–77PubMedCrossRefGoogle Scholar
  124. Yeh L, Chen W, Li W, Espana E, Ouyang J, Kawakita T, Kao W, Tseng S, Liu C (2005) Soluble lumican glycoprotein purified from human amniotic membrane promotes corneal epithelial wound healing. Invest Ophthalmol Vis Sci 46:479–486CrossRefGoogle Scholar
  125. Yu J, Zhang L (2004) Apoptosis in human cancer cells. Curr Opin Oncol 16:19–24PubMedCrossRefGoogle Scholar
  126. Yuge I, Takumi Y, Koyabu K, Hashimoto S, Takashima S, Fukuyama T, Nikaido T, Usami S (2004) Transplanted human amniotic epithelial cells express connexin 26 and Na-K-adenosine triphosphatase in the inner ear. Transplantation 77:1452–1454PubMedCrossRefGoogle Scholar
  127. Zhou S, Chen J, Feng J (2003) The effects of amniotic membrane on polymorphonuclear cells. Chin Med J 116:788–790PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. C. Mamede
    • 1
    • 2
    • 3
  • M. J. Carvalho
    • 1
    • 3
    • 4
  • A. M. Abrantes
    • 1
    • 3
  • M. Laranjo
    • 1
    • 3
  • C. J. Maia
    • 2
  • M. F. Botelho
    • 1
    • 3
  1. 1.Biophysics Unit, IBILI, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.CICS-UBI, Health Sciences Research CentreUniversity of Beira InteriorCovilhãPortugal
  3. 3.Centre of Investigation on Environment, Genetics and Oncobiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.Gynaecology and Obstetrics ServiceUniversity Hospitals of CoimbraCoimbraPortugal

Personalised recommendations