Skip to main content

Advertisement

Log in

In vitro expansion of human adipose-derived stem cells in a spinner culture system using human extracellular matrix powders

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Stem cell therapy requires large numbers of stem cells to replace damaged tissues, but only limited numbers of stem cells can be harvested from a single patient. To obtain large quantities of stem cells with differentiation potential, we explored a spinner culture system using human extracellular matrix (hECM) powders. The hECM was extracted from adipose tissue and fabricated into powders. Human adipose-derived stem cells (hASCs) were isolated, seeded on hECM powders, and cultivated in a spinner flask. The 3-D culture system, using hECM powders, was highly effective for promoting cell proliferation. The number of hASCs in the 3-D culture system significantly increased for 10 days, resulting in an approximately 10-fold expansion, whereas a traditional 2-D culture system showed just a 2.8-fold expansion. Surface markers, transcriptional factors, and differentiation potential of hASCs were assayed to identify the characteristics of proliferated cells in 3-D culture system. The hASCs expressed the pluripotency markers, Oct-4 and Sox-2 during 3-D culture and retained their capacity to differentiate into adipogenic, osteogenic, and chondrogenic lineages. These findings demonstrate that the 3-D culture systems using hECM powders provide an efficient in vitro environment for stem cell proliferation, and could act as stem cell delivery carriers for autologous tissue engineering and cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abranches E, Bekman E, Henrique D, Cabral JM (2007) Expansion of mouse embryonic stem cells on microcarriers. Biotechnol Bioeng 96:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrin Met 11:327–332

    Article  CAS  Google Scholar 

  • Akasha AA, Sotiriadou I, Doss MX, Halbach M, Winkler J, Baunach JJ, Katsen-Globa A, Zimmermann H, Choo Y, Hescheler J, Sachinidis A (2008) Entrapment of embryonic stem cells-derived cardiomyocytes in macroporous biodegradable microspheres: preparation and characterization. Cell Physiol Biochem 22:665–672

    Article  PubMed  CAS  Google Scholar 

  • Anselme K, Bigerelle M (2006) Modelling approach in cell/material interactions studies. Biomaterials 27:1187–1199

    Article  PubMed  CAS  Google Scholar 

  • Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  PubMed  CAS  Google Scholar 

  • Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45:115–120

    Article  PubMed  CAS  Google Scholar 

  • Chai C, Leong KW (2007) Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther 15:467–480

    Article  PubMed  CAS  Google Scholar 

  • Choi JS, Yang H-J, Kim BS, Kim JD, Kim JY, Yoo B, Park K, Lee HY, Cho YW (2009) Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release 139:2–7

    Article  PubMed  CAS  Google Scholar 

  • Choi JS, Yang H-J, Kim BS, Kim JD, Lee SH, Lee EK, Park K, Cho YW, Lee HY (2010) Fabrication of porous extracellular matrix (ECM) scaffolds from human adipose tissue. Tissue Eng Part C Methods 16:387–396

    Article  PubMed  CAS  Google Scholar 

  • Curran JM, Chen R, Hunt JA (2005) Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 26:7057–7067

    Article  PubMed  CAS  Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    Article  PubMed  CAS  Google Scholar 

  • Eibes G, dos Santos F, Andrade PZ, Boura JS, Abecasis MM, da Silva CL, Cabral JM (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J Biotechnol 146:194–197

    Article  PubMed  CAS  Google Scholar 

  • Estes BT, Diekman BO, Guilak F (2008) Monolayer cell expansion conditions affect the chondrogenic potential of adipose-derived stem cells. Biotechnol Bioeng 99:986–995

    Article  PubMed  CAS  Google Scholar 

  • Fok EYL, Zandstra PW (2005) Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells 23:1333–1342

    Article  PubMed  CAS  Google Scholar 

  • Frauenschuh S, Reichmann E, Ibold Y, Goetz PM, Sittinger M, Ringe J (2007) A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Biotechnol Prog 23:187–193

    Article  PubMed  CAS  Google Scholar 

  • Gilbert TW, Stolz DB, Biancaniello F, Simmons-Byrd A, Badylak SF (2005) Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials 26:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Godara P, McFarland CD, Nordon RE (2008) Design of bioreactors for mesenchymal stem cell tissue engineering. J Chem Technol Biotechnol 83:408–420

    Article  CAS  Google Scholar 

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Hu W-S, Aunins JG (1997) Large-scale mammalian cell culture. Curr Opin Biotechnol 8:148–153

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  • Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412–423

    Article  PubMed  CAS  Google Scholar 

  • King JA, Miller WM (2007) Bioreactor development for stem cell expansion and controlled differentiation. Curr Opin Chem Biol 11:394–398

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Piret JM, Gregory D, Haddow DJ, Kilburn DG (1992) Polystyrene macroporous bead support for mammalian cell culture. Ann N Y Acad Sci 665:137–145

    Article  PubMed  CAS  Google Scholar 

  • Murua A, Portero A, Orive G, Hernandez RM, de Castro M, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Control Release 132:76–83

    Article  PubMed  CAS  Google Scholar 

  • Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM (2008) Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138:24–32

    Article  PubMed  CAS  Google Scholar 

  • Philp D, Chen SS, Fitzgerald W, Orenstein J, Margolis L, Kleinman HK (2005) Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells 23:288–296

    Article  PubMed  Google Scholar 

  • Sart S, Schneider Y-J, Agathos SN (2009) Ear mesenchymal stem cells: an efficient adult multipotent cell population fit for rapid and scalable expansion. J Biotechnol 139:291–299

    Article  PubMed  CAS  Google Scholar 

  • Sart S, Schneider YJ, Agathos SN (2010) Influence of culture parameters on ear mesenchymal stem cells expanded on microcarriers. J Biotechnol 150:149–160

    Article  PubMed  CAS  Google Scholar 

  • Schäffler A, Büchler C (2007) Concise review: adipose tissue-derived stromal cells: basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827

    Article  PubMed  Google Scholar 

  • Sekiya I, Larson BL, Smith JR, Pochampally R, Cui J-G, Prockop DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20:530–541

    Article  PubMed  Google Scholar 

  • Wu T-J, Huang H-H, Hsu Y-M, Lyn S-R, Wang YJ (2007a) A novel method of encapsulating and cultivating adherent mammalian cells within collagen microcarriers. Biotechnol Bioeng 98:578–585

    Article  PubMed  CAS  Google Scholar 

  • Wu YN, Yang Z, Hui JH, Ouyang HW, Lee EH (2007b) Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells. Biomaterials 28:4056–4067

    Article  PubMed  CAS  Google Scholar 

  • Xu AS, Reid LM (2001) Soft, porous poly(D, L-lactide-co-glycotide) microcarriers designed for ex vivo studies and for transplantation of adherent cell types including progenitors. Ann N Y Acad Sci 944:144–159

    Article  PubMed  CAS  Google Scholar 

  • Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramírez M, Bueren JA (2006) Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24:2582–2591

    Article  PubMed  Google Scholar 

  • Zangi L, Rivkin R, Kassis I, Levdansky L, Marx G, Gorodetsky R (2006) High-yield isolation, expansion, and differentiation of rat bone marrow-derived mesenchymal stem cells with fibrin microbeads. Tissue Eng 12:2343–2354

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Grayson WL, Ma T, Irsigler A (2009) Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds. J Cell Physiol 219:421–429

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hee Young Lee or Yong Woo Cho.

Additional information

This work was supported by the Basic Science Research Program (Grant No. 20090075546) and the Engineering Research Center Program (Grant No. R11-2008-044-02001-0) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology. This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (Grant No. 20104010100620) grant funded by the Ministry of Knowledge Economy, Republic of Korea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.S., Kim, B.S., Kim, J.D. et al. In vitro expansion of human adipose-derived stem cells in a spinner culture system using human extracellular matrix powders. Cell Tissue Res 345, 415–423 (2011). https://doi.org/10.1007/s00441-011-1223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1223-5

Keywords

Navigation