Skip to main content
Log in

Three-dimensional cell culture (3DCC) improves secretion of signaling molecules of mesenchymal stem cells (MSCs)

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

The secretome of mesenchymal stem cells (MSCs), also called MSC-conditioned media (MSC-CM), represents one of the promising strategies for cellular therapy and tissue repair and regeneration. MSC-CM contains growth factors and cytokines that control many cellular responses during development and regeneration. Traditional 2D cell culture (2DCC) has previously been used to generate MSC-CM while evidence has proved that the physiological and biological behaviors of cells in 2DCC are significantly different from those in 3D cell culture (3DCC). Therefore, the objective is to compare the content of MSC-CM generated from traditional 2DCC and 3DCC using a 3D scaffold.

Methods

Adipose tissue-derived MSCs (AT-MSCs) were isolated from four donors (N = 4) and characterized according to the criteria stipulated by the International Society for Cell Therapy (ISCT). MSCs at passage 3 were grown in traditional 2DCC until 70% confluence and MSC-CM were collected at 24, 48, and 94 h. On the other hand, MSCs at passage 3 were grown on a polystyrene scaffold for 10 days to generate a 3D model of MSCs, and then MSC-CM was collected at 24, 48, and 94 h. MSC-CM from both 2DCC and 3DCC were analyzed for protein content using ELISA. Haematoxylin eosin (HE) staining and immunofluorescence (IF) were used to characterize the 3DCC of MSCs.

Results

MSCs from 2DCC were fibroblast like cells, and flow cytometry showed they were positive for CD73 and CD105 while being negative for CD14, CD19, and HLA-DR. They were also able to differentiate into adipocytes, osteoblasts, and chondrocytes. HE and IF showed that MSCs formed 3D model structures on the polystyrene scaffold. MSC-CM collected from both 2DCC and 3DCC contained growth factors, e.g., platelet derived growth factor (PDGF-AB), transforming growth factor-1 (TGF-1), hepatocyte growth factor (HGF), stromal derived factor-1 (SDF-1), interleukin 1 (IL-1), and interleukin 6 (IL-6). Concentrations of biomolecules secreted by MSCs in 3DCC were significantly higher than in 2DCC.

Conclusion

It could be concluded that 3DCC of MSCs using a polystyrene scaffold is a novel approach to generate MSC secretome for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moyassar Basil Hadi Al-Shaibani.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Shaibani, M.B.H. Three-dimensional cell culture (3DCC) improves secretion of signaling molecules of mesenchymal stem cells (MSCs). Biotechnol Lett 44, 143–155 (2022). https://doi.org/10.1007/s10529-021-03216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-021-03216-9

Keywords

Navigation