Human Genetics

, Volume 131, Issue 1, pp 33–39 | Cite as

Common variants for atrial fibrillation: results from genome-wide association studies

Review Paper


Atrial fibrillation (AF) affects more than 5 million people worldwide; however, none of the anti-arrhythmic drugs available now are entirely optimal in terms of efficacy and safety. A better understanding of the molecular mechanism of AF will facilitate the process of finding new strategies to prevent AF. As the non-familial AF is the major form of AF, identifying common variants for AF in these populations by genome-wide association studies will definitely accelerate this process. This review summarizes the recently identified common AF variants on 4q25, 16q22, and 1q21 and discusses their implications for the clinic.


  1. Anselmi CV, Novelli V, Roncarati R et al (2008) Association of rs2200733 at 4q25 with atrial flutter/fibrillation diseases in an Italian population. Heart 94:1394–1396CrossRefGoogle Scholar
  2. Benjamin EJ, Rice KM, Arking DE et al (2009) Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet 41:879–881PubMedCrossRefGoogle Scholar
  3. Bhuiyan ZA, van den Berg MP, van Tintelen JP et al (2007) Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation 116:1569–1576PubMedCrossRefGoogle Scholar
  4. Body SC, Collard CD, Shernan SK et al (2009) Variation in the 4q25 chromosomal locus predicts atrial fibrillation after coronary artery bypass graft surgery. Circ Cardiovasc Genet 2:499–506PubMedCrossRefGoogle Scholar
  5. Brugada R, Hong K, Dumaine R et al (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109:30–35PubMedCrossRefGoogle Scholar
  6. Chen YH, Xu SJ, Bendahhou S et al (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254PubMedCrossRefGoogle Scholar
  7. Cheng Y, Zhan Q, Zhao J, Xiao J (2010) Stabilizing ryanodine receptor type 2: a novel strategy for the treatment of atrial fibrillation. Med Sci Monit 16:HY23–HY26PubMedGoogle Scholar
  8. Chinchilla A, Daimi H, Lozano-Velasco E et al (2011) Pitx2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet 4:269–279Google Scholar
  9. Ellinor PT, Nam EG, Shea MA, Milan DJ, Ruskin JN, MacRae CA (2008) Cardiac sodium channel mutation in atrial fibrillation. Heart Rhythm 5:99–105PubMedCrossRefGoogle Scholar
  10. Ellinor PT, Lunetta KL, Glazer NL et al (2010) Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet 42:240–244PubMedCrossRefGoogle Scholar
  11. Gollob MH, Jones DL, Krahn AD et al (2006) Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med 354:2677–2688PubMedCrossRefGoogle Scholar
  12. Gretarsdottir S, Thorleifsson G, Manolescu A et al (2008) Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol 64:402–409PubMedCrossRefGoogle Scholar
  13. Gudbjartsson DF, Arnar DO, Helgadottir A et al (2007) Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448:353–357PubMedCrossRefGoogle Scholar
  14. Gudbjartsson DF, Holm H, Gretarsdottir S et al (2009) A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet 41:876–878PubMedCrossRefGoogle Scholar
  15. Hodgson-Zingman DM, Karst ML, Zingman LV et al (2008) Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med 359:158–165PubMedCrossRefGoogle Scholar
  16. Hong K, Piper DR, Diaz-Valdecantos A et al (2005) De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res 68:433–440PubMedCrossRefGoogle Scholar
  17. Husser D, Adams V, Piorkowski C, Hindricks G, Bollmann A (2010) Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol 55:747–753PubMedCrossRefGoogle Scholar
  18. Kaab S, Darbar D, van Noord C et al (2009) Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur Heart J 30:813–819PubMedCrossRefGoogle Scholar
  19. Kirchhof P, Kahr PC, Kaese S et al (2011) Pitx2c is expressed in the adult left atrium, and reducing pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet 4:123–133PubMedCrossRefGoogle Scholar
  20. Lee KT, Yeh HY, Tung CP et al (2010) Association of RS2200733 but not RS10033464 on 4q25 with atrial fibrillation based on the recessive model in a Taiwanese population. Cardiology 116:151–156PubMedCrossRefGoogle Scholar
  21. Lemmens R, Buysschaert I, Geelen V et al (2010) The association of the 4q25 susceptibility variant for atrial fibrillation with stroke is limited to stroke of cardioembolic etiology. Stroke 41:1850–1857PubMedCrossRefGoogle Scholar
  22. Li C, Wang F, Yang Y et al (2011) Significant association of SNP rs2106261 in the ZFHX3 gene with atrial fibrillation in a Chinese Han GeneID population. Hum Genet 129:239–246PubMedCrossRefGoogle Scholar
  23. Lubitz SA, Sinner MF, Lunetta KL et al (2010) Independent susceptibility markers for atrial fibrillation on chromosome 4q25. Circulation 122:976–984PubMedCrossRefGoogle Scholar
  24. Makiyama T, Akao M, Shizuta S et al (2008) A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J Am Coll Cardiol 52:1326–1334PubMedCrossRefGoogle Scholar
  25. Olson TM, Michels VV, Ballew JD et al (2005) Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. Jama 293:447–454PubMedCrossRefGoogle Scholar
  26. Olson TM, Alekseev AE, Liu XK et al (2006) Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet 15:2185–2191PubMedCrossRefGoogle Scholar
  27. Olson TM, Alekseev AE, Moreau C et al (2007) KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med 4:110–116PubMedCrossRefGoogle Scholar
  28. Postma AV, van de Meerakker JB, Mathijssen IB et al (2008) A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 102:1433–1442PubMedCrossRefGoogle Scholar
  29. Qi J, Xiao J, Zhang Y et al (2009) Effects of potassium channel blockers on changes in refractoriness of atrial cardiomyocytes induced by stretch. Exp Biol Med (Maywood) 234:779–784CrossRefGoogle Scholar
  30. Quentien MH, Vieira V, Menasche M et al (2010) Truncation of PITX2 differentially affects its activity on physiological targets. J Mol Endocrinol 46:9–19PubMedCrossRefGoogle Scholar
  31. Ravn LS, Aizawa Y, Pollevick GD et al (2008) Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation. Heart Rhythm 5:427–435PubMedCrossRefGoogle Scholar
  32. Shi L, Li C, Wang C et al (2009) Assessment of association of rs2200733 on chromosome 4q25 with atrial fibrillation and ischemic stroke in a Chinese Han population. Hum Genet 126:843–849PubMedCrossRefGoogle Scholar
  33. Sinner MF, Ellinor PT, Meitinger T, Benjamin EJ, Kaab S (2011) Genome-wide association studies of atrial fibrillation: past, present, and future. Cardiovasc Res 89:701–709PubMedCrossRefGoogle Scholar
  34. Thibodeau IL, Xu J, Li Q et al (2010) Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. Circulation 122:236–244PubMedCrossRefGoogle Scholar
  35. Virani SS, Brautbar A, Lee W et al (2011) Usefulness of single nucleotide polymorphism in chromosome 4q25 to predict in-hospital and long-term development of atrial fibrillation and survival in patients undergoing coronary artery bypass grafting. Am J Cardiol 107:1505–1509Google Scholar
  36. Wang J, Klysik E, Sood S, Johnson RL, Wehrens XH, Martin JF (2010) Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc Natl Acad Sci USA 107:9753–9758PubMedCrossRefGoogle Scholar
  37. Watanabe H, Darbar D, Kaiser DW et al (2009) Mutations in sodium channel beta1- and beta2-subunits associated with atrial fibrillation. Circ Arrhythm Electrophysiol 2:268–275PubMedCrossRefGoogle Scholar
  38. Xia M, Jin Q, Bendahhou S et al (2005) A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun 332:1012–1019PubMedCrossRefGoogle Scholar
  39. Xiao J, Liang D, Zhao H et al (2010a) 2-Aminoethoxydiphenyl borate, a inositol 1, 4, 5-triphosphate receptor inhibitor, prevents atrial fibrillation. Exp Biol Med (Maywood) 235:862–868CrossRefGoogle Scholar
  40. Xiao J, Zhang H, Liang D et al (2010b) Taxol, a microtubule stabilizer, prevents atrial fibrillation in in vitro atrial fibrillation models using rabbit hearts. Med Sci Monit 16:BR353–BR360PubMedGoogle Scholar
  41. Xiao JJ, Liang DD, Chen YH (2011) The genetics of atrial fibrillation: from the bench to the besides. Annu Rev Genomics Hum Genet 12:6.1–6.24Google Scholar
  42. Xiao J, Liang D, Zhang Y, et al. (2011) MicroRNA expression signature in atrial fibrillation with mitral stenosis. Physiol Genomics 43:655–664Google Scholar
  43. Yang Y, Xia M, Jin Q et al (2004) Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet 75:899–905PubMedCrossRefGoogle Scholar
  44. Zhang DF, Liang B, Lin J, Liu B, Zhou QS, Yang YQ (2005) KCNE3 R53H substitution in familial atrial fibrillation. Chin Med J (Engl) 118:1735–1738Google Scholar
  45. Zhang X, Chen S, Yoo S et al (2008) Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135:1017–1027PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PediatricsTongji Hospital, Tongji University School of MedicineShanghaiChina
  2. 2.Key Laboratory of Arrhythmias, Ministry of EducationTongji University School of MedicineShanghaiChina
  3. 3.Department of GastroenterologyTongji Hospital, Tongji University School of MedicineShanghaiChina
  4. 4.Cardiovascular InstituteBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  5. 5.Department of RadiologyEast Hospital, Tongji University School of MedicineShanghaiChina

Personalised recommendations