Skip to main content
Log in

Detection and prevalence of Haemoproteus archilochus (Haemosporida, Haemoproteidae) in two species of California hummingbirds

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Haemosporidian blood parasites are transmitted to a wide range of avian hosts via blood-sucking dipteran vectors. Microscopy has revealed an impressive diversity of avian haemosporidia with more than 250 species described. Moreover, PCR and subsequent sequence analyses have suggested a much greater diversity of haemosporidia than morphological analyses alone. Given the importance of these parasites, very few studies have focused on the charismatic hummingbirds. To date, three Haemoproteus species (Haemoproteus archilochus, Haemoproteus trochili, and Haemoproteus witti) and one Leucocytozoon species (Leucocytozoon quynzae) have been described in blood samples taken from hummingbirds (Trochilidae). Unconfirmed Plasmodium lineages have also been detected in hummingbirds. Here, we report the detection of H. archilochus in two hummingbird species (Calypte anna and Archilochus alexandri) sampled in Northern California and perform a phylogenetic analysis of mitochondrial cytochrome b (cyt b) gene lineages. A total of 261 hummingbirds (157 C. anna, 104 A. alexandri) were sampled and screened for blood parasites using PCR and microscopy techniques. Combining both methods, 4 (2.55%) haemosporidian infections were detected in C. anna and 18 (17.31%) haemosporidian infections were detected in A. alexandri. Molecular analyses revealed four distinct H. archilocus cyt b lineages, which clustered as a monophyletic clade. No species of Plasmodium or Leucocytozoon were detected in this study, raising the possibility of specific vector associations with hummingbirds. These results provide resources for future studies of haemosporidian prevalence, diversity, and pathogenicity in California hummingbird populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguirre AA, Tabor GM (2008) Global factors driving emerging infectious diseases. Ann N Y Acad Sci 1149:1–3. doi:10.1196/annals.1428.052

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215 (3):403–410

  • Asghar M, Hasselquist D, Hansson B, Zehtindjiev P, Westerdahl H, Bensch S (2015) Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347(6220):436–438. doi:10.1126/science.1261121

    Article  CAS  PubMed  Google Scholar 

  • Baltosser WH, Russell SM (2000) Black-chinned hummingbird (Archilochus alexandri). In: Poole A, Gill F (eds) The birds of North America. No 495. The Birds of North America Inc, Philadelphia

    Google Scholar 

  • Burton R (2001) The World of the Hummingbird. Firefly Books. Ontario, Canada

  • Buzato S, Sazima M, Sazima I (2000) Hummingbird-pollinated floras at three Atlantic Forest sites. Biotropica 32:824–841. doi:10.1111/j.1744-7429.2000.tb00621.x

    Article  Google Scholar 

  • Campbell TW, Dein FJ (1984) Avian hematology. The basics. Vet Clin N Am-Small 14(2):223–248

    Article  CAS  Google Scholar 

  • Carlson JS, Giannitti F, Valkiūnas G, Tell LA, Snipes J, Wright S (2016) A method to preserve low parasitaemia Plasmodium-infected avian blood for host and vector infectivity assays. Malar J 15:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Coatney RG, West E (1938) Some blood parasites from Nebraska birds II. Am Midl Nat 19:601–612

    Article  Google Scholar 

  • Dusek RJ, Hall JS, Nashold SW, TeSlaa JL, Ip HS (2011) Evaluation of Nobuto filter paper strips for the detection of Avian Influenza virus antibody in waterfowl. Avian Diseases 55 (4):674–676

  • Earlé RA, Huchzermeyer FW, Bennett GF, Brossy JJ (1993) Babesia peircei sp. nov. from the jackass penguin. S Afr J Zool 28:88–90

    Article  Google Scholar 

  • Fallon S, Bermingham E, Ricklefs RE (2003) Island and taxon effects in parasitism revisited: avian malaria in the lesser Antilles. Evolution 57:606–615

    Article  PubMed  Google Scholar 

  • Godoy LA, Tell LA, Ernest HB (2014) Hummingbird health: pathogens and disease conditions in the family Trochilidae. J Ornithol 155(1):1–12. doi:10.1007/s10336-013-0990-z

    Article  Google Scholar 

  • González AD, Lotta IA, García LF, Moncada LI, Matta NE (2015) Avian haemosporidians from Neotropical highlands: evidence from morphological and molecular data. Parasitol Int 64(4):48–59. doi:10.1016/j.parint.2015.01.007

    Article  PubMed  Google Scholar 

  • Greiner EC, Bennett GF, White EM, Coombs RF (1975) Distribution of the avian hematozoa of North America. Can J Zool 53:1762–1787

    Article  CAS  PubMed  Google Scholar 

  • Harrigan RJ, Sedano R, Chasar AC, Chaves JA, Nguyen JT, Whitaker A, Smith TB (2014) New host and lineage diversity of avian haemosporidia in the Northern Andes. Evol Appl 7:799–811. doi:10.1111/eva.12176

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802. doi:10.1645/GE-184R1

    Article  CAS  PubMed  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, García-Fraile S, Belda EJ (2010) The blood parasite Haemoproteus reduces survival in a wild bird: a medication experiment. Biol Lett 23:663–665

    Article  Google Scholar 

  • Marzal A, De Lope F, Navarro C, Møller AP (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–545

    Article  PubMed  Google Scholar 

  • Matta NE, Pacheco MA, Escalante AA, Valkiūnas G, Ayerbe-Quiñones F, Acevedo-Cendales LD (2014) Description of Leucocytozoon quynzae sp. nov. (Haemosporida, Leucocytozoidae) from hummingbirds, with remarks on distribution and possible vectors of leucocytozoids in South America. Parasitol Res 113:2991. doi:10.1007/s00436-014-3961-2

    Article  PubMed  Google Scholar 

  • McGuire JA, Witt CC, Remsen JV, Corl A, Rabosky DL, Altshuler DL, Dudley R (2014) Molecular phylogenetics and the diversification of hummingbirds. Curr Bio 24:910–916

    Article  CAS  Google Scholar 

  • Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). P Roy Soc B-Biol Sci 267:2507–2510

    Article  CAS  Google Scholar 

  • Michaud V, Gil P, Kwiatek O, Prome S, Dixon L, Romero L, Le Potier MF, Arias M, Couacy-Hymann E, Roger F, Libeau G, Albina E (2007) Long-term storage at tropical temperature of dried blood filter papers for detection and genotyping of RNA and DNA viruses by direct PCR. J Virol Methods 146:257–265. doi:10.1016/j.jviromet.2007.07.006

    Article  CAS  PubMed  Google Scholar 

  • Moens MAJ, Valkiūnas G, Paca A, Bonaccorso E, Aguirre N, Pérez-Tris J (2016) Parasite specialization in a unique habitat: hummingbirds as reservoirs of generalist blood parasites of Andean birds. J Anim Ecol. doi:10.1111/1365-2656.12550

    PubMed  Google Scholar 

  • Olias P, Wegelin M, Zenker W, Freter S, Gruber AD, Klopfleisch R (2011) Avian malaria deaths in parrots, Europe. Emerg Infect Dis 17(5):950–952. doi:10.3201/eid1705.101618

    Article  PubMed  PubMed Central  Google Scholar 

  • Owen JC (2011) Collecting, processing, and storing avian blood: a review. J Field Ornithol 82:339–354. doi:10.1111/j.1557-9263.2011.00338.x

    Article  Google Scholar 

  • Parashar UD, Burton A, Lanata C, Boschi-Pinto C, Shibuya K, Steele D, Glass RI (2009) Global mortality associated with rotavirus disease among children in 2004. J Infect Dis 200(Suppl(5)):S9–S15. doi:10.1086/605025

    Article  PubMed  Google Scholar 

  • Perkins SL, Schall J (2002) A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol 88(5):972–978

  • Ricklefs RE, Fallon SM (2002) Diversification and host switching in avian malaria parasites. P Roy Soc Lond B Bio 269:885–892

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 (12):1572–1574. doi:10.1093/bioinformatics/btg180

  • Sato Y, Hagihara M, Yamaguchi T, Yukawa M, Murata K (2007). Phylogenetic comparison of Leucocytozoon spp. from wild birds of Japan. J Vet Med Sci 69(1):55–59

  • Valkiūnas G (2005) Avian malaria parasites and other Haemosporidia. CRC, Boca Raton

    Google Scholar 

  • Valkiūnas G, Iezhova TA (2004) Detrimental effects of Haemoproteus infections on the survival of biting midge Culicoides impunctatus (Dipteraceratopogonidae). J Parasitol 90:194–196

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Iezhova TA, Brooks DR, Hanelt B, Brant SV, Sutherlin ME, Causey D (2004) Additional observations on blood parasites of birds in Costa Rica. J Wildlife Dis 40:555–561

    Article  Google Scholar 

  • Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Sehgal RNM, Bensch S (2008) A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol 94:1395–1401. doi:10.1645/GE-1570.1

    Article  PubMed  Google Scholar 

  • Waldeonstöm J, Bensch S, Hasselquist D, Östman Ö (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194

    Article  Google Scholar 

  • White E, Bennett GN, Williams NA (1979) Avian Haemoproteidae. 11. The haemoproteids of the hummingbird family Trochilidae. Can J Zool 57:908–913

    Article  Google Scholar 

  • Williamson S (2001) Hummingbirds of North America. Peterson field guide. Houghton Mifflin Company, New York

    Google Scholar 

  • Yanega GM, Rubega MA (2004) Feeding mechanisms: Hummingbird jaw bends to aid insect capture. Nature 428(6983):615–615

Download references

Acknowledgements

We appreciate the collaboration of many people with their institutions who helped make this research possible. The following individuals provided technical and field assistance for this research: J. Snipes, T. Drazenovich, K. Hagadorn, Y. Adedeji, S. Wheeler, E. Walther, L. Dalbeck, H.W. Liu, N. Pedersen, M. Buchalski, S. Wethington, R. Colwell, B. Robinson, S. Wetzlich, A. Engilis, I. Engilis, J. Trochet, R. Sarvani, many hummingbird banders and volunteers, the UC Davis School of Veterinary Medicine Teaching Hospital, the UC Davis Museum of Wildlife and Fish Biology, California Animal Health and Food Safety Laboratory (CAHFS), California Department of Health Services, California Department of Fish and Wildlife, Lindsay Wildlife Hospital (Walnut Creek, CA), and several wildlife rehabilitation facilities. This work is presented in memory of Loreto Godoy, who provided help to get this project started. Funding for this work was provided from the US Fish and Wildlife Service Avian Disease Ecology Grant (H.B.E. and L.A.T.), a Students Training in Advanced Research fellowship from UC Davis School of Veterinary Medicine (S.B.), and a UC Davis Academic Senate research grant (H.B.E.). We also thank Dr. Gediminas Valkiūnas for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. M. Sehgal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradshaw, A.C., Tell, L.A., Ernest, H.B. et al. Detection and prevalence of Haemoproteus archilochus (Haemosporida, Haemoproteidae) in two species of California hummingbirds. Parasitol Res 116, 1879–1885 (2017). https://doi.org/10.1007/s00436-017-5463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5463-5

Keywords

Navigation