, Volume 127, Issue 1, pp 21–36 | Cite as

Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): implications for the phylogenetic position of Tardigrada

  • Juliane Zantke
  • Carsten Wolff
  • Gerhard Scholtz
Original Paper


The morphology of the central nervous system of the tardigrade species Macrobiotus hufelandi was analysed with anti α-tubulin immunostaining in combination with confocal-laser-scanning-microscopy and computer aided three-dimensional reconstruction. The brain anatomy is unexpectedly complex with distinct tracts and highly intermingled nerve fibres. In contrast to older descriptions, we could not detect a suboesophageal ganglion. Furthermore, we found no evidence for a tripartite/three-segmented brain organisation. The median part of the brain is directly connected to the first pair of trunk ganglia via circumoesophageal connectives. Surprisingly, the four paired ventral ganglia do not show segmental commissures typical for the ladder-like nervous system of arthropods. Our findings constrain the phylogenetic position of Tardigrada. The much simpler organisation of the central nervous system of Tardigrada compared to that of Onychophora and Euarthropoda and some similarities to the nervous system of Cycloneuralia support a phylogenetic position of Tardigrada outside an Onychophora/Euarthropoda clade. This means that Tardigrada might be either the sister group to all other Arthropoda or they are more closely related to Cycloneuralia.


Ventral Nerve Cord Suboesophageal Ganglion Ventral Ganglion Segmental Ganglion Outer Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Greg Edgecombe for critical comments and the members of the group “Vergleichende Zoologie” at the Humboldt-Universität zu Berlin for many discussions and practical advices.

Supplementary material (12.2 mb)
Movie 1: Ventral view of the entire body of Macrobiotus hufelandi (Hoechst, α-tubulin). Anterior is up. Visible are the arrangements of cell nuclei and fibre bundles in the head and the connection of the four ventral ganglia by the paired connectives (MOV 12.2 Mb) (14.5 mb)
Movie 2: Structure of the brain of Macrobiotus hufelandi (α-tubulin). In the starting position anterior is up, dorsal view. Visible are the dorsal commissure, preoral commissure, nerves n4 and n13, and the dorsal expansion of the dorsal clusters (MOV 14.5 Mb) (13.3 mb)
Movie 3: Nervous system in the head and the first ventral ganglion of Macrobiotus hufelandi (α-tubulin). Anterior is up, ventral view. The connectives of the chain of ventral ganglia run anteriorly representing the inner connectives which merge into the inner lobes of the brain. The outer connectives merge into the outer lobes (MOV 13.2 Mb)


  1. Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493PubMedCrossRefGoogle Scholar
  2. Ax P (1999) Das System der Metazoa II. Ein Lehrbuch der phylogenetischen Systematik. Fischer Verlag, StuttgartGoogle Scholar
  3. Ax P (2001) Das System der Metazoa III. Ein Lehrbuch der phylogenetischen Systematik. Fischer Verlag, StuttgartGoogle Scholar
  4. Basse A (1905) Beiträge zur Kenntnis des Baues der Tardigraden. Z wiss Zool 80:259–281Google Scholar
  5. Bergström J, Hou X-G (2001) Cambrian Onychophora or xenusians. Zool Anz 240:237–245CrossRefGoogle Scholar
  6. Brusca R, Brusca GJ (2002) Invertebrates. Sinauer Associates, SunderlandGoogle Scholar
  7. Budd GE (2001) Tardigrades as “stem- group arthropods”: the evidence from the Cambrian fauna. Zool Anz 240:265–279CrossRefGoogle Scholar
  8. Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. WH Freeman, San FranciscoGoogle Scholar
  9. Dewel RA, Dewel WC (1996) The brain of Echiniscus viridissimus Peterfi, 1956 (Heterotardigrada): a key to understanding the phylogenetic position of tardigrades and the evolution of the arthropod head. Zool J Linn Soc 116:35–49CrossRefGoogle Scholar
  10. Dewel RA, Dewel WC (1997) The place of tardigrades in arthropod evolution. In: Fortey RA, Thomas RH (eds) Arthropod Relationships. Chapman and Hall, London, pp 109–123Google Scholar
  11. Dewel RA, Budd GE, Castano DF, Dewel WC (1999) The organisation of the suboesophageal nervous system in tardigrades: insights into the evolution of the arthropod hypostome and tritocerebrum. Zool Anz 238:191–203Google Scholar
  12. Dove H, Stollewerk A (2003) Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects. Development 130:2161–2171PubMedCrossRefGoogle Scholar
  13. Doyère L (1840) Mémoire sur les Tardigrades. Ann Sci Nat 14:269–361Google Scholar
  14. Edgecombe GD, Wilson GDF, Colgan DJ, Gray MR, Cassis G (2000) Arthropod cladistics: combined analysis of histone H3 and U2 snRNA sequences and morphology. Cladistics 16:155–203CrossRefGoogle Scholar
  15. Eriksson BJ, Tait NN, Budd GE (2003) Head development in the Onychophoran Euperipatoides kanagrensis with particular reference to the central nervous system. J Morph 255:1–23PubMedCrossRefGoogle Scholar
  16. Fanenbruck M, Harzsch S, Wägele J-W (2004) The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc Nat Acad Sci USA 101:3868–3873PubMedCrossRefGoogle Scholar
  17. Gabriel WN, Goldstein B (2007) Segmental expression of Pax3/7 and Engrailed homologs. Dev Genes Evol 217:421–433PubMedCrossRefGoogle Scholar
  18. Garey JR (2001) Ecdysozoa: The relationship between Cycloneuralia and Panarthropoda. Zool Anz 240:321–330CrossRefGoogle Scholar
  19. Garey JM, Krotec M, Nelson DR, Brooks J (1996) Molecular analysis supports a tardigrade-arthropod association. Invert Biol 115:79–88CrossRefGoogle Scholar
  20. Garey J, Nelson DR, Mackey L, Li J (1999) Tardigrade phylogeny: Congruency of morphological and molecular evidence. Zool Anz 238:205–210Google Scholar
  21. Giribet G, Carranza S, Baguñà J, Riutort M, Ribera C (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol Biol Evol 13:76–84PubMedGoogle Scholar
  22. Giribet G (2003) Molecules, development and fossils in the study of metazoan evolution; Articulata versus Ecdysozoa revisited. Zoology 106:303–326PubMedCrossRefGoogle Scholar
  23. Greeff R (1865) Ueber das Nervensystem der Bärthierchen, Arctiscoida C.A.S. Schultze (Tardigraden Doyère) mit besonderer Berücksichtigung der Muskelnerven und deren Endigungen. Arch Mikrosk Anat 1:101–122CrossRefGoogle Scholar
  24. Greven H (1980) Die Bärtierchen. Ziemsen Verlag, WittenbergGoogle Scholar
  25. Greven H, Kuhlmann D (1972) Die Struktur des Nervengewebes von Macrobiotus hufelandi C.A.S. Schultze (Tardigrada). Z Zellforsch 135:131–146CrossRefGoogle Scholar
  26. Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Springer, BerlinGoogle Scholar
  27. Harzsch S (2004a) The tritocerebrum of Euarthropoda: a “non-drosophilocentric” perspective. Evol Dev 6:303–309PubMedCrossRefGoogle Scholar
  28. Harzsch S (2004b) Phylogenetic comparisons of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morph 259:198–213PubMedCrossRefGoogle Scholar
  29. Harzsch S (2006) Neurophylogeny: architecture of the nervous system and a fresh view on arthropod phylogeny. Integr Comp Biol 46:162–194CrossRefGoogle Scholar
  30. Hejnol A, Schnabel R (2005) The Eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 132:1349–1361PubMedCrossRefGoogle Scholar
  31. Holmgren N, (1916) Zur vergleichenden Anatomie des Gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden und Insekten. Kunglig Svenska Vetensk Akad Handl Stockholm 56:1–303Google Scholar
  32. Jørgensen A, Kristensen RM (2004) Molecular phylogeny of Tardigrada- investigation of the monophyly of Heterotardigrada. Mol Phyl Evol 32:666–670CrossRefGoogle Scholar
  33. Jenner RA, Scholtz G (2005) Playing another round of metazoan phylogenetics: Historical epistemology, sensitivity analysis, and the position of Arthropoda within the Metazoa on the basis of morphology. In: Koenemann S, Jenner RA (eds) Crustacea and Arthropod Relationships. CRC Press, Boca Raton, pp 355–385Google Scholar
  34. Kinchin IM (1994) The Biology of Tardigrades. Portland Press, LondonGoogle Scholar
  35. Kristensen RM (1982) The first record of cyclomorphosis in Tardigrada based on a new genus and species from Arctic meiobenthos. Z Zool Syst Evolutionsforsch 20:249–270CrossRefGoogle Scholar
  36. Kristensen RM (2003) Comparative morphology: do the ultrastructural investigations of Loricifera and Tardigrada support the clade Ecdysozoa? In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The New Panorama of Animal Evolution: Proceedings XVIII International Congress of Zoology. Pensoft, Sofia, pp 467–477Google Scholar
  37. Kristensen RM, Higgins RP (1984a) A new family of Arthrotardigrada (Tardigrada: Heterotardigrada) from the Atlantic coast of Florida, USA. Trans Am Microsc Soc 103:295–311CrossRefGoogle Scholar
  38. Kristensen RM, Higgins RP (1984b) Revision of Styraconyx (Tardigrada: Halechiniscidae) with descriptions of two new species from Disko Bay, West Greenland. Smithson Contrib Zool 391:1–40Google Scholar
  39. Loesel R (2005) Editorial - The arthropod brain: retracing six hundred million years of evolution. Arthropod Struct Dev 34:207–209CrossRefGoogle Scholar
  40. Maas A, Waloszek D (2001) Cambrian derivatives of the early arthropod stem lineage, pentastomids, tardigrades and lobopodians—an ‘Orsten’ perspective. Zool Anz 240:451–459CrossRefGoogle Scholar
  41. Marcus E (1929) Tardigrada. In: Bronn HG (ed) Klassen und Ordnungen des Tierreichs. Akademische Verlagsgesellschaft, Leipzig, pp 1–609Google Scholar
  42. Mallatt J, Giribet G (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa:37 more arthropods and a kinorhynch. Mol Phyl Evol 40:772–794CrossRefGoogle Scholar
  43. Mayer G, Harzsch S (2007) Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evol Biol 7:118PubMedCrossRefGoogle Scholar
  44. Moon SY, Kim W (1996) Phylogenetic position of the Tardigrada based on the 18S ribosomal RNA gene sequences. Zool J Linn Soc 116:61–69CrossRefGoogle Scholar
  45. Müller MCM (2006) Polychaete nervous systems: Ground patterns and variations-cLS microscopy and the importance of novel characteristics in phylogenetic analysis. Integr Comp Biol 46:125–133CrossRefGoogle Scholar
  46. Nebelsick M (1993) Introvert, mouth cone, and nervous system of Echinoderes capitatus (Kinorhyncha, Cyclorhagida) and implications for the phylogenetic relationships of Kinorhyncha. Zoomorphology 113:211–232CrossRefGoogle Scholar
  47. Neuhaus B (1994): Ultrastructure of alimentary canal and body cavity, ground pattern, and phylogenetic relationships of the Kinorhyncha. Micro Mar 9:61–156Google Scholar
  48. Nichols PB, Nelson DR, Garey JR (2006) A family level of analysis of tardigrade phylogeny. Hydrobiologia 558:53–60CrossRefGoogle Scholar
  49. Nielsen C (2001) Animal Evolution: Interrelationships of the Living Phyla. Oxford University Press, OxfordGoogle Scholar
  50. Park J-K, Rho HS, Kristensen RM, Kim W, Giribet G (2006) First molecular data on the phylum Loricifera – An investigation into the phylogeny of Ecdysozoa with emphasis on the positions of Loricifera and Priapulida. Zool Sci 23:943–954PubMedCrossRefGoogle Scholar
  51. Plate L (1889) Beiträge zur Naturgeschichte der Tardigraden. Zool Jahrb Anat 3:487–550Google Scholar
  52. Ramazzotti G, Maucci W (1983) Il Philum Tardigrada. Mem Ist Ital Idrobiol 41:1–1012Google Scholar
  53. Richters F, Krumbach TH (1926) Tardigrada. In: Kükenthal W, Krumbach TH (eds) Handbuch der Zoologie 3. Berlin und Leipzig, pp 1–68Google Scholar
  54. Ruhberg H (2004) Onychophora, Stummelfüßer. In: Westheide W, Rieger R (eds) Spezielle Zoologie. Spektrum Akademischer Verlag, Heidelberg, pp 420–428Google Scholar
  55. Sandemann DC, Scholtz G, Sandemann RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265:112–133CrossRefGoogle Scholar
  56. Schmidt-Rhaesa A (2001) Tardigrades—are they really miniaturized dwarfs? Zool Anz 240:549–555CrossRefGoogle Scholar
  57. Schmidt-Rhaesa A, Kulessa J (2007) Muscular architecture of Milnesium tardigradum (Tardigrada) and other eutardigrades. Zoomorphology (in press)Google Scholar
  58. Schmidt-Rhaesa A, Ehlers U, Bartolomaeus T, Lemburg C, Garey JR (1998) The phylogenetic position of the Arthropoda. J Morph 238:263–285CrossRefGoogle Scholar
  59. Scholtz G (2002) The Articulata hypothesis- or what is a segment? Org Divers Evol 2:197–215CrossRefGoogle Scholar
  60. Scholtz G, Edgecombe GD (2005) Heads, Hox and the phylogenetic position of trilobites. In: Koenemann S, Jenner R (eds) Crustacea and Arthropod Relationships. CRC Press, Boca Raton, pp 139–165Google Scholar
  61. Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415PubMedCrossRefGoogle Scholar
  62. Schürmann FW (1995) Common and special features of the nervous system of Onychophora: a comparison with Arthropoda, Annelida, and some other invertebrates. In: Breidbach O, Kutsch W (eds) The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Birkhäuser, Basel, pp 139–158Google Scholar
  63. Storch V (1991) Priapulida. In: Harrison FW (ed) Microscopic Anatomy of Invertebrates, vol 4, Wiley-Liss, New York, pp 333–350Google Scholar
  64. Strausfeld NJ, Strausfeld CM, Stowe S, Rowell D, Loesel R (2006) The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Struct Dev 35:169–196PubMedCrossRefGoogle Scholar
  65. Thulin G (1928) Über die Phylogenie und das System der Tardigraden. Hereditas 11:207–266CrossRefGoogle Scholar
  66. Walz B (1978) Electron microscopic investigation of cephalic sense organs of the Tardigrade Macrobiotus hufelandi C.A.S. Schultze. Zoomorphology 89:1–19CrossRefGoogle Scholar
  67. Wiederhöft H, Greven H (1996) The cerebral ganglia of Milnesium tardigradum Doyère (Apochela, Tardigrada): three dimensional reconstruction and notes on their ultrastructure. Zool J Linn Soc 116:71–84CrossRefGoogle Scholar
  68. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Trans R Soc B 314:1–340CrossRefGoogle Scholar
  69. Whitington PM (2007) The evolution of arthropod nervous systems: insights from neural development in the Onychophora and Myriapoda. In: Kaas JH (eds) Evolution of Nervous Systems, vol 1, theories, development, invertebrates. Elsevier, Amsterdam, pp 317–336CrossRefGoogle Scholar
  70. Wright KA (1991) Nematoda. In: Harrison FW (ed) Microscopic Anatomy of Invertebrates, vol 4. Wiley-Liss, New York, pp 111–195Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Juliane Zantke
    • 1
    • 2
  • Carsten Wolff
    • 1
  • Gerhard Scholtz
    • 1
  1. 1.Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende ZoologieBerlinGermany
  2. 2.Department für EvolutionsbiologieUniversität WienWienAustria

Personalised recommendations