Skip to main content

Advertisement

Log in

Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Reactivation of latent cytomegalovirus (CMV) in the transient state of immunodeficiency after hematopoietic cell transplantation (HCT) is the most frequent and severe viral complication endangering leukemia therapy success. By infecting the bone marrow (BM) stroma of the transplantation recipient, CMV can directly interfere with BM repopulation by the transplanted donor-derived hematopoietic cells and thus delay immune reconstitution of the recipient. Cytopathogenic virus spread in tissues can result in CMV disease with multiple organ manifestations of which interstitial pneumonia is the most feared. There exists a ‘window of risk’ between hematoablative treatment and reconstitution of antiviral immunity after HCT, whereby timely reconstitution of antiviral CD8 T cells is a recognized positive prognostic parameter for the control of reactivated CMV infection and prevention of CMV disease. Supplementation of endogenous reconstitution by adoptive cell transfer of ‘ready-to-go’ effector and/or memory virus epitope-specific CD8 T cells is a therapeutic option to bridge the ‘window of risk.’ Preclinical research in murine models of CMV disease has been pivotal by providing ‘proof of concept’ for a benefit from CD8 T-cell therapy of HCT-associated CMV disease (reviewed in Holtappels et al. Med Microbiol Immunol 197:125–134, 2008). Here, we give an update of our previous review with focus on parameters that determine the efficacy of adoptive immunotherapy of CMV infection by antiviral CD8 T cells in the murine model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

The references marked with an asterisk result from the work within project part E3 of the collaborative research center (SFB) 490

  1. Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273

    PubMed  CAS  Google Scholar 

  2. Reddehase MJ, Mutter W, Koszinowski UH (1987) In vivo application of recombinant interleukin 2 in the immunotherapy of established cytomegalovirus infection. J Exp Med 165:650–656

    Article  PubMed  CAS  Google Scholar 

  3. Reddehase MJ, Mutter W, Münch K, Bühring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108

    PubMed  CAS  Google Scholar 

  4. Reddehase MJ, Jonjic S, Weiland F, Mutter W, Koszinowski UH (1988) Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J Virol 62:1061–1065

    PubMed  CAS  Google Scholar 

  5. *Holtappels R, Böhm V, Podlech J, Reddehase MJ (2008) CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med Microbiol Immunol 197:125–134

    Article  PubMed  Google Scholar 

  6. Madej RM, Davis J, Holden MJ, Kwang S, Labourier E, Schneider GJ (2010) International standards and reference materials for quantitative molecular infectious disease testing. J Mol Diagn 12:133–143

    Article  PubMed  CAS  Google Scholar 

  7. Pollack M, Heugel J, Xie H, Leisenring W, Storek J, Young JA, Kukreja M, Gress R, Tomblyn M, Boeckh M (2011) An international comparison of current strategies to prevent herpesvirus and fungal infections in hematopoietic cell transplant recipients. Biol Blood Marrow Transplant 17:664–673

    Article  PubMed  Google Scholar 

  8. Seo S, Boeckh M (2013) Clinical cytomegalovirus research: hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume II, Chapter 16. Caister Academic Press, Norfolk (in press)

  9. Revello MG, Gerna G (2013) State of the art and trends in cytomegalovirus diagnostics. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume II, Chapter 18. Caister Academic Press, Norfolk (in press)

  10. Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804

    PubMed  CAS  Google Scholar 

  11. Holtappels R, Podlech J, Geginat G, Steffens HP, Thomas D, Reddehase MJ (1998) Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. J Virol 72:7201–7212

    PubMed  CAS  Google Scholar 

  12. *Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507

    Article  PubMed  CAS  Google Scholar 

  13. *Böhm V, Seckert CK, Simon CO, Thomas D, Renzaho A, Gendig D, Holtappels R, Reddehase MJ (2009) Immune evasion proteins enhance cytomegalovirus latency in the lungs. J Virol 83:10293–10298

    Article  PubMed  Google Scholar 

  14. *Seckert CK, Schader SI, Ebert S, Thomas D, Freitag K, Renzaho A, Podlech J, Reddehase MJ, Holtappels R (2011) Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. J Gen Virol 92:1994–2005

    Article  PubMed  CAS  Google Scholar 

  15. Podlech J, Holtappels R, Wirtz N, Steffens HP, Reddehase MJ (1998) Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79:2099–2104

    PubMed  CAS  Google Scholar 

  16. Mayer A, Podlech J, Kurz S, Steffens HP, Maiberger S, Thalmeier K, Angele P, Dreher L, Reddehase MJ (1997) Bone marrow failure by cytomegalovirus is associated with an in vivo deficiency in the expression of essential stromal hemopoietin genes. J Virol 71:4589–4598

    PubMed  CAS  Google Scholar 

  17. Steffens HP, Podlech J, Kurz S, Angele P, Dreis D, Reddehase MJ (1998) Cytomegalovirus inhibits the engraftment of donor bone marrow cells by downregulation of hemopoietin gene expression in recipient stroma. J Virol 72:5006–5015

    PubMed  CAS  Google Scholar 

  18. Dobonici M, Podlech J, Steffens HP, Maiberger S, Reddehase MJ (1998) Evidence against a key role for transforming growth factor-beta1 in cytomegalovirus-induced bone marrow aplasia. J Gen Virol 79:867–876

    PubMed  CAS  Google Scholar 

  19. Greenberg PD, Reusser P, Goodrich JM, Riddell SR (1991) Development of a treatment regimen for human cytomegalovirus (CMV) infection in bone marrow transplantation recipients by adoptive transfer of donor-derived CMV-specific T cell clones expanded in vitro. Ann N Y Acad Sci 636:184–195

    Article  PubMed  CAS  Google Scholar 

  20. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241

    Article  PubMed  CAS  Google Scholar 

  21. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044

    Article  PubMed  CAS  Google Scholar 

  22. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1375–1377

    Article  PubMed  Google Scholar 

  23. Einsele H, Hamprecht K (2003) Immunotherapy of cytomegalovirus infection after stem-cell transplantation: a new option? Lancet 362:1343–1344

    Article  PubMed  Google Scholar 

  24. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386

    Article  PubMed  CAS  Google Scholar 

  25. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM, Mohty M, Or R, Maschan M, Schumm M, Hamprecht K, Handgretinger R, Lang P, Einsele H (2010) Adoptive transfer of pp 65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 116:4360–4367

    Article  PubMed  CAS  Google Scholar 

  26. Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M, Germeroth L, Ringhoffer M, Ringhoffer S, Wiesneth M, Greiner J, Michel D, Mertens T, Rojewski M, Marx M, von Harsdorf S, Döhner H, Seifried E, Bunjes D, Schmitt M (2011) Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51:591–599

    Article  PubMed  CAS  Google Scholar 

  27. *Holtappels R, Ebert S, Podlech J, Fink A, Böhm V, Lemmermann NA, Freitag K, Renzaho A, Thomas D, Reddehase MJ (2013) Murine model for cytoimmunotherapy of CMV disease after hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume II, Chapter 17. Caister Academic Press, Norfolk (in press)

  28. Reddehase MJ, Koszinowski UH (1984) Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371

    Article  PubMed  CAS  Google Scholar 

  29. Reddehase MJ, Rothbard JB, Koszinowski UH (1989) A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337:651–653

    Article  PubMed  CAS  Google Scholar 

  30. Reddehase MJ, Koszinowski UH (1991) Redistribution of critical major histocompatibility complex and T cell receptor-binding functions of residues in an antigenic sequence after biterminal substitution. Eur J Immunol 21:1697–1701

    Article  PubMed  CAS  Google Scholar 

  31. Rognan D, Reddehase MJ, Koszinowski UH, Folkers G (1992) Molecular modeling of an antigenic complex between a viral peptide and a class I major histocompatibility glycoprotein. Proteins 13:70–85

    Article  PubMed  CAS  Google Scholar 

  32. *Holtappels R, Thomas D, Podlech J, Geginat G, Steffens HP, Reddehase MJ (2000) The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 74:1871–1884

    Article  PubMed  CAS  Google Scholar 

  33. *Holtappels R, Thomas D, Reddehase MJ (2000) Identification of a K(d)-restricted antigenic peptide encoded by murine cytomegalovirus early gene M84. J Gen Virol 81:3037–3042

    PubMed  CAS  Google Scholar 

  34. *Holtappels R, Podlech J, Grzimek NK, Thomas D, Pahl-Seibert MF, Reddehase MJ (2001) Experimental preemptive immunotherapy of murine cytomegalovirus disease with CD8 T-cell lines specific for ppM83 and pM84, the two homologs of human cytomegalovirus tegument protein ppUL83 (pp65). J Virol 75:6584–6600

    Article  PubMed  CAS  Google Scholar 

  35. *Holtappels R, Grzimek NK, Thomas D, Reddehase MJ (2002) Early gene m18, a novel player in the immune response to murine cytomegalovirus. J Gen Virol 83:311–316

    PubMed  CAS  Google Scholar 

  36. *Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164

    Article  PubMed  CAS  Google Scholar 

  37. *Holtappels R, Simon CO, Munks MW, Thomas D, Deegen P, Kühnapfel B, Däubner T, Emde SF, Podlech J, Grzimek NK, Oehrlein-Karpi SA, Hill AB, Reddehase MJ (2008) Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol 82:5781–5796

    Article  PubMed  CAS  Google Scholar 

  38. *Holtappels R, Thomas D, Reddehase MJ (2009) The efficacy of antigen processing is critical for protection against cytomegalovirus disease in the presence of viral immune evasion proteins. J Virol 83:9611–9615

    Google Scholar 

  39. Reddehase MJ (2000) The immunogenicity of human and murine cytomegaloviruses. Curr Opin Immunol 12:390–396

    Article  PubMed  CAS  Google Scholar 

  40. Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844

    Article  PubMed  CAS  Google Scholar 

  41. *Holtappels R, Munks MW, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus disease in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses molecular biology and immunology. Chapter 19. Caister Academic Press, Norfolk, pp 383–418

    Google Scholar 

  42. Rawlinson WD, Farrell HE, Barrell BG (1996) Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849

    PubMed  CAS  Google Scholar 

  43. Rammensee HG, Bachmann J, Stevanovic S (1997) MHC ligands and peptide motifs. Molecular Biology Intelligence Unit, Landes Bioscience, Austin

  44. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM, Kloetzel PM, Rammensee HG, Schild H, Holzhütter HG (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62:1025–1037

    Article  PubMed  CAS  Google Scholar 

  45. Munks MW, Gold MC, Zajac AL, Doom CM, Morello CS, Spector DH, Hill AB (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176:3760–3766

    PubMed  CAS  Google Scholar 

  46. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685

    Article  PubMed  CAS  Google Scholar 

  47. Wills MR, Mason GM, Sissons JGP (2013) Adaptive cellular immunity to human cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume II, Chapter 7. Caister Academic Press, Norfolk (in press)

  48. Morello CS, Cranmer LD, Spector DH (2000) Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp 65). J Virol 74:3696–3708

    Article  PubMed  CAS  Google Scholar 

  49. Ye M, Morello CS, Spector DH (2002) Strong CD8 T-cell responses following coimmunization with plasmids expressing the dominant pp 89 and subdominant M84 antigens of murine cytomegalovirus correlate with long-term protection against subsequent viral challenge. J Virol 76:2100–2112

    Article  PubMed  CAS  Google Scholar 

  50. Ye M, Morello CS, Spector DH (2004) Multiple epitopes in the murine cytomegalovirus early gene product M84 are efficiently presented in infected primary macrophages and contribute to strong CD8+ T-lymphocyte responses and protection following DNA immunization. J Virol 78:11233–11245

    Article  PubMed  CAS  Google Scholar 

  51. Gold MC, Munks MW, Wagner M, Koszinowski UH, Hill AB, Fling SP (2002) The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. J Immunol 169:359–365

    PubMed  CAS  Google Scholar 

  52. *Böhm V, Simon CO, Podlech J, Seckert CK, Gendig D, Deegen P, Gillert-Marien D, Lemmermann NA, Holtappels R, Reddehase MJ (2008) The immune evasion paradox: immunoevasins of murine cytomegalovirus enhance priming of CD8 T cells by preventing negative feedback regulation. J Virol 82:11637–11650

    Article  PubMed  Google Scholar 

  53. Snyder CM, Allan JE, Bonnett EL, Doom CM, Hill AB (2010) Cross-presentation of a spread-defective MCMV is sufficient to prime the majority of virus-specific CD8+ T cells. PLoS ONE 5:e9681

    Article  PubMed  Google Scholar 

  54. Torti N, Walton SM, Murphy KM, Oxenius A (2011) Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur J Immunol 41:2612–2618

    Article  PubMed  CAS  Google Scholar 

  55. *Holtappels R, Podlech J, Pahl-Seibert MF, Jülch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136

    Article  PubMed  CAS  Google Scholar 

  56. *Holtappels R, Janda J, Thomas D, Schenk S, Reddehase MJ, Geginat G (2008) Adoptive CD8 T cell control of pathogens cannot be improved by combining protective epitope specificities. J Infect Dis 197:622–629

    Article  PubMed  Google Scholar 

  57. Lemmermann NA, Gergely K, Böhm V, Deegen P, Däubner T, Reddehase MJ (2010) Immune evasion proteins of murine cytomegalovirus preferentially affect cell surface display of recently generated peptide presentation complexes. J Virol 84:1221–1236

    Article  PubMed  CAS  Google Scholar 

  58. Hemmer B, Vergelli M, Pinilla C, Houghten R, Martin R (1998) Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Immunol Today 19:163–168

    Article  PubMed  CAS  Google Scholar 

  59. Calis JJ, de Boer RJ, Keşmir C (2012) Degenerate T-cell recognition of peptides on MHC molecules creates large holes in the T-cell repertoire. PLoS Comput Biol 8:e1002412

    Article  PubMed  CAS  Google Scholar 

  60. Welsh RM, Selin LK (2002) No one is naive: the significance of heterologous T-cell immunity. Nat Rev Immunol 2:417–426

    PubMed  CAS  Google Scholar 

  61. Welsh RM, Che JW, Brehm MA, Selin LK (2010) Heterologous immunity between viruses. Immunol Rev 235:244–266

    PubMed  CAS  Google Scholar 

  62. Däubner T, Fink A, Seitz A, Tenzer S, Müller J, Strand D, Seckert CK, Janssen C, Renzaho A, Grzimek NK, Simon CO, Ebert S, Reddehase MJ, Oehrlein-Karpi SA, Lemmermann NA (2010) A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum. J Gen Virol 91:1524–1534

    Google Scholar 

  63. *Holtappels R, Grzimek NK, Simon CO, Thomas D, Dreis D, Reddehase MJ (2002) Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J Virol 76:6044–6053

    Google Scholar 

  64. Alexander-Miller MA, Leggatt GR, Berzofsky JA (1996) Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc Natl Acad Sci U S A 93:4102–4107

    Article  PubMed  CAS  Google Scholar 

  65. Kedl RM, Kappler JW, Marrack P (2003) Epitope dominance, competition and T cell affinity maturation. Curr Opin Immunol 15:120–127

    Article  PubMed  CAS  Google Scholar 

  66. Obar JJ, Lefrançois L (2010) Early events governing memory CD8+ T-cell differentiation. Int Immunol 22:619–625

    Article  PubMed  CAS  Google Scholar 

  67. Obar JJ, Lefrançois L (2010) Memory CD8+ T cell differentiation. Ann N Y Acad Sci 1183:251–266

    Article  PubMed  CAS  Google Scholar 

  68. McLaughlin-Taylor E, Pande H, Forman SJ, Tanamachi B, Li CR, Zaia JA, Greenberg PD, Riddell SR (1994) Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol 43:103–110

    Article  PubMed  CAS  Google Scholar 

  69. Weninger W, Manjunath N, von Andrian UH (2002) Migration and differentiation of CD8+ T cells. Immunol Rev 186:221–233

    Article  PubMed  CAS  Google Scholar 

  70. Boyman O, Létourneau S, Krieg C, Sprent J (2009) Homeostatic proliferation and survival of naïve and memory T cells. Eur J Immunol 39:2088–2094

    Article  PubMed  CAS  Google Scholar 

  71. *Pahl-Seibert MF, Juelch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R (2005) Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79:5400–5413

    Article  PubMed  CAS  Google Scholar 

  72. *Böhm V, Podlech J, Thomas D, Deegen P, Pahl-Seibert MF, Lemmermann NA, Grzimek NK, Oehrlein-Karpi SA, Reddehase MJ, Holtappels R (2008) Epitope-specific in vivo protection against cytomegalovirus disease by CD8 T cells in the murine model of preemptive immunotherapy. Med Microbiol Immunol 197:135–144

    Article  PubMed  Google Scholar 

  73. Davison AJ, Holton M, Dolan A, Dargan DJ, Gatherer D, Hayward GS (2013) Comparative genomics of primate cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume I, Chapter 1. Caister Academic Press, Norfolk (in press)

  74. Redwood AJ, Shellam GR, Smith LM (2013) Molecular evolution of murine cytomegalovirus genomes. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Volume I, Chapter 2. Caister Academic Press, Norfolk (in press)

Download references

Acknowledgments

We thank all current and former members of our group for their contributions made over the past 12 years as well as our collaboration partners Ulrich H. Koszinowski (Munich, Germany), Dirk H. Busch (Munich, Germany), Ann B. Hill and Michael Munks (Portland, Oregon), and Stipan Jonjic (Rijeka, Croatia) for advice, discussion, and tools. This work was funded by the Deutsche Forschungsgemeinschaft, SFB 490, and represents a cooperation between individual projects E3 ‘Persistence of murine cytomegalovirus after modulation of the CD8 T-cell immunome’ (S.E., J.P., D. G.-M., D.T., and R.H.) and E4 ‘Antigen presentation under the influence of murine cytomegalovirus immune evasion proteins’ (A.F., K.F, and M.J.R). K.M.G. and M.J.R. were also supported by a grant from the Deutsche Forschungsgemeinschaft, Clinical Research Group KFO 183, individual project TP8 ‘Establishment of challenge models for optimizing the immunotherapy of cytomegalovirus disease’. J.K.B. received a scholarship from the ‘Forschungszentrum Immunologie’ (FZI) of the Johannes Gutenberg University Mainz, University Medical Center, in the Gender Equality Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaela Holtappels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, S., Podlech, J., Gillert-Marien, D. et al. Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection. Med Microbiol Immunol 201, 527–539 (2012). https://doi.org/10.1007/s00430-012-0258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-012-0258-x

Keywords

Navigation