Skip to main content
Log in

Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Berns K, Ilg W, Deck M, Dillmann R (1998) The mammalian-like quadrupedal walking machine BISAM. In: International workshop on advanced motion control, Coimbra, Portugal

  • Billard A, Ijspeert AJ (2000) Biologically inspired neural controllers for motor control in a quadruped robot. In: International joint conference on neural networks, Come, Italy

  • Buehler M, Playter R, Raibert M (2005) Robots step outside. In: International symposium on adaptive motion of animals and machines, Ilmenau, Germany

  • Canderle J, Caldwell DG (2000) A biologically inspired quadruped using pneumatic muscle actuators. In: International conference on climbing and walking robots, Madrid, Spain

  • Cappelletto J, Estavez P, Modina W, Fermin L, Bogado JM, Grieco JC, Fernando-Lopez G (2006) Gait synthesis and modulation for quadruped robot locomotion using a simple feed-forward network. In: International conference on artificial intelligence and soft computing, Zakopane, Poland

  • Cappelletto J, Estevez P, Fernando-Lopez G, Grieco JC (2007) A cpg with force feedback for a statically stable quadruped gait. In: International conference on climbing and walking robots, Singapore

  • Chae KG, Park JH (2008) Trajectory optimization with ga and control for quadruped robots. J Mech Sci Technol 23:114–123

    Article  Google Scholar 

  • Collins JJ, Richmond SA (1994) Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern 71:375–385

    Article  Google Scholar 

  • Dégallier Rochat S, Ijspeert A (2010) Modeling discrete and rhythmic movements through motor primitives: a review. Biol Cybern 103(4):319–338

    Article  Google Scholar 

  • Degallier S, Righetti L, Natale L, Nori F, Metta G, Ijspeert A (2008) A modular bio-inspired architecture for movement generation for the infant-like robot iCub. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, Scottsdale, AZ, USA

  • Fujii A, Saito N, Nakahira K, Ishiguro A, Eggenberger P (2002) Generation of an adaptive controller cpg for a quadruped robot with neuromodulation mechanism. In: IEEE international workshop on intelligent robots and systems, Lausanne, Switzerland

  • Fujita M, Kitano H (1998) Development of an autonomous quadruped robot for robot entertainment. Auton Robots 5(1):7–18

    Article  Google Scholar 

  • Fukuoka Y, Kimura H, Cohen AH (2003) Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int J Robotics Res 22(2–3):187–202

    Google Scholar 

  • Fukuoka Y, Nakamura H, Kimura H (1999) Biologically-inspired adaptive dynamic walking of the quadruped on irregular terrain. In: International conference on control applications, Kohala Coast, HI, USA

  • Golubovic D, Hu H (2003a) Ga-based gait generation of sony quadruped robots. In: IASTED international conference on artificial intelligence and applications, Benalmadena, Spain

  • Golubovic D, Hu H (2003b) Parameter optimisation of an evolutionary algorithm for on-line gait generation of quadruped robots. In: IEEE international conference on industrial technology

  • Griffin TM, Kram R, Wickler SJ, Hoyt DF (2004) Biomechanical and energetic determinants of the walk trot transition in horses. J Exp Biol 207:4215–4223

    Article  PubMed  Google Scholar 

  • Hebbel M, Nistico W, Fisseler D (2007) Learning in a high dimensional space: fast omnidirectional quadrupedal locomotion. In: Lakemeyer G, Sklar E, Sorrenti D, Takahashi T (eds) RoboCup 2006: Robot Soccer World Cup X, Lecture Notes in Computer Science, vol 4434. Springer, Berlin, pp 314–321

    Chapter  Google Scholar 

  • Heglund NC, Taylor CR (1988) Speed, stride frequency and energy cost per stride: how do they change with body size and gait? J Exp Biol 138:301–318

    PubMed  CAS  Google Scholar 

  • Hirose S, Fukuda Y, Nagakubo A, Tsukagoshi H, Arikawa K, Endo G, Doi T, Hodoshima R (2009) Quadruped walking robots at tokio institute of technology. IEEE Robotics Autom Mag 16(2):104–114

    Article  Google Scholar 

  • Hoyt D, Taylor R (1981) Gait and the energetics of locomotion in horses. Nature 292:239240

    Article  Google Scholar 

  • Hu H, Gu D (2005) Hybrid learning architecture for fuzzy control of quadruped walking robots. Int J Intell Syst 20(2):131–152

    Article  Google Scholar 

  • Iida F, Gomez GJ, Pfeifer R (2005) Exploiting body dynamics for controlling a running quadruped robot. In: IEEE international conference on robotics and automation, Seattle, USA

  • Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653

    Article  PubMed  Google Scholar 

  • Inagaki K, Kobayashi H (1993) A gait transition for quadruped walking machine. In: IEEE/RSJ international conference on intelligent robots and systems, Yokohama, Japan

  • Ishii T, Masakado S, Ishii K (2004) Locomotion of a quadruped robot using cpg. In: IEEE International Joint Conference on Neural Networks, Budapest, Hungary

  • Kim KY, Kwon O, Yeon JS, Park JH, (2006) Elliptic trajectory generation for galloping quadruped robots. In: IEEE international conference on robotics and biomimetics, Kunming, China

  • Kim HK, Ohung W, Won D, Park S, Kim TJ, Kim SS (2008) Foot trajectory generation of hydraulic quadruped robots on uneven terrain. IFAC World Congress, Seoul

    Google Scholar 

  • Kimura H, Shimoyama I, Miura H (1989) Dynamics in the dynamic walk of a quadruped robot. Adv Robotics 4(3):283–301

    Article  Google Scholar 

  • Kimura H, Fukuoka Y, Cohen AH (2007) Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robotics Res 26(5):475–490

    Article  Google Scholar 

  • Kramy DP, Orin DE (2003) Achieving periodic leg trajectories to evolve a quadruped gallop. In: IEEE international conference on robotics and automation, Tapei, Taiwan

  • Lin JN, Song SM (2002) Modeling gait transitions of quadrupeds and their generalization with cmac neural networks. In: IEEE international conference on systems, man and cybernetics, Yasmine Hammamet, Tunisia

  • Liu C, Chen Y, Zhang J, Chen Q (2009) Cpg driven locomotion control of quadruped robot. In: IEEE international conference on systems, man and cybernetics, San Antonio, TX, USA

  • Moro FL, Tsagarakis NG, Caldwell DG (2011) A human-like walking for the COmpliant huMANoid COMAN based on CoM trajectory reconstruction from kinematic Motion Primitives. In: 11th IEEE-RAS international conference on humanoid robots, Bled, Slovenia, pp 364–370

  • Moro FL, Tsagarakis NG, Caldwell DG (2012a) Efficient human-like walking for the COmpliant huMANoid COMAN based on kinematic Motion Primitives (kMPs). IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA

  • Moro FL, Tsagarakis NG, Caldwell DG (2012b) On the kinematic Motion Primitives (kMPs): theory and application. Frontiers Neurorobotics 6(10):1–18

    Google Scholar 

  • Nichol JG, Singh SPN, Waldron KJ, Orin DE (2004) System design of a quadrupedal galloping machine. Int J Robotics Res 23(10–11): 1013–1027

    Google Scholar 

  • Pongas D, Mistry M, Schaal S (2007) A robust quadruped walking gait for traversing rough terrain. In: IEEE international conference on robotics and automation, Roma, Italy

  • Poulakakis I, Smith JA, Buehler M (2005) Modeling and experiments of untethered quadrupedal running with a bounding gait: the scout ii robot. Int J Robotics Res 24(4):239256

    Google Scholar 

  • Raibert M (1986) Legged robots that balance. MIT Press, Cambridge

    Google Scholar 

  • Raibert MH (1990) Trotting, pacing and bounding by a quadruped robot. J Biomech 23(1):8398

    Google Scholar 

  • Raibert M, Blankespoor K, Nelson G, Playter R, the BigDog Team (2008) Bigdog, the roughterrain quadruped robot. IFAC World Congress, Seoul

    Google Scholar 

  • Rebula JR, Neuhaus PD, Bonnlander BV, Johnson MJ, Pratt JE (2007) A controller for the littledog quadruped walking on rough terrain. In: IEEE international conference on robotics and automation, Roma, Italy

  • Righetti L, Ijspeert AJ (2008) Pattern generators with sensory feedback for the control of quadruped locomotion. In: IEEE international conference on robotics and automation, Pasadena, CA, USA

  • Rutishauser S, Sproewitz A, Righetti L, Ijspeert AJ (2008) Passive compliant quadruped robot using central pattern generators for locomotion control. In: IEEE international conference on biomedical robotics and biomechatronics, Scottsdale, AZ, USA

  • Sakakibara Y, Kan K, Hosoda Y, Hattori M, Fujie M (1990) Foot trajectory for a quadruped walking machine. In: IEEE international workshop on intelligent robots and systems, Ibaraki, Japan

  • Semini C, Tsagarakis NG, Guglielmino E, Focchi M, Cannella F, Caldwell DG (2011) Design of hyq a hydraulically and electrically actuated quadruped robot. Proc Inst Mech Eng I 225(1):831–849

    Google Scholar 

  • Son Y, Kamano T, Yasuno T, Suzuki T, Harada H (2006) Generation of adaptive gait patterns for quadruped robot with cpg network including motor dynamic model. Electr Eng Jpn 155(1):35–43

    Article  Google Scholar 

  • Spröwitz A, Tuleu A, Vespignani M, Ajallooeian M, Badri E, Ijspeert AJ (2012) Towards dynamic trot gait locomotion—design, control, and experiments with cheetah-cub, a compliant quadruped robot (under review)

  • Tsujita K, Toui H, Tsuchiya K (2005) Dynamic turning control of a quadruped locomotion robot using oscillators. Adv Robotics 19(10):1115–1133

    Article  Google Scholar 

  • Vilensky JA, Libii JN, Moore AM (1991) Trot–gallop gait transitions in quadrupeds. Physiol Behav 50(4):835–842

    Article  PubMed  CAS  Google Scholar 

  • Witte H, Hackert R, Ilg W, Biltzinger J, Schillinger N, Biedermann F, Jergas M, Preuschoft H, Fischer MS (2003) Quadrupedal mammals as paragons for walking machines. In: Proceedings of the International Symposium on Adaptive Motion of Animals and Machines, Kyoto

  • Zhang X, Zheng H, Guan X, Chifeng Z, Zhao L (2005) A biological inspired quadruped robot: structure and control. In: IEEE international conference on robotics and biomimetics, Hong Kong, China

Download references

Acknowledgments

This study was supported by the European Commission FP7, AMARSI Project ICT-2009-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico L. Moro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 19571 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moro, F.L., Spröwitz, A., Tuleu, A. et al. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot. Biol Cybern 107, 309–320 (2013). https://doi.org/10.1007/s00422-013-0551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-013-0551-9

Keywords

Navigation