Biological Cybernetics

, Volume 107, Issue 3, pp 309–320 | Cite as

Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot

  • Federico L. Moro
  • Alexander Spröwitz
  • Alexandre Tuleu
  • Massimo Vespignani
  • Nikos G. Tsagarakis
  • Auke J. Ijspeert
  • Darwin G. Caldwell
Original Paper

Abstract

This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.

Keywords

Quadrupedal locomotion Kinematic Motion Primitives (kMPs) Horse-like gaits Gait transitions Compliant quadruped robot 

Supplementary material

422_2013_551_MOESM1_ESM.avi (19.1 mb)
Supplementary material 1 (avi 19571 KB)

References

  1. Berns K, Ilg W, Deck M, Dillmann R (1998) The mammalian-like quadrupedal walking machine BISAM. In: International workshop on advanced motion control, Coimbra, PortugalGoogle Scholar
  2. Billard A, Ijspeert AJ (2000) Biologically inspired neural controllers for motor control in a quadruped robot. In: International joint conference on neural networks, Come, ItalyGoogle Scholar
  3. Buehler M, Playter R, Raibert M (2005) Robots step outside. In: International symposium on adaptive motion of animals and machines, Ilmenau, GermanyGoogle Scholar
  4. Canderle J, Caldwell DG (2000) A biologically inspired quadruped using pneumatic muscle actuators. In: International conference on climbing and walking robots, Madrid, SpainGoogle Scholar
  5. Cappelletto J, Estavez P, Modina W, Fermin L, Bogado JM, Grieco JC, Fernando-Lopez G (2006) Gait synthesis and modulation for quadruped robot locomotion using a simple feed-forward network. In: International conference on artificial intelligence and soft computing, Zakopane, PolandGoogle Scholar
  6. Cappelletto J, Estevez P, Fernando-Lopez G, Grieco JC (2007) A cpg with force feedback for a statically stable quadruped gait. In: International conference on climbing and walking robots, SingaporeGoogle Scholar
  7. Chae KG, Park JH (2008) Trajectory optimization with ga and control for quadruped robots. J Mech Sci Technol 23:114–123CrossRefGoogle Scholar
  8. Collins JJ, Richmond SA (1994) Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern 71:375–385CrossRefGoogle Scholar
  9. Dégallier Rochat S, Ijspeert A (2010) Modeling discrete and rhythmic movements through motor primitives: a review. Biol Cybern 103(4):319–338CrossRefGoogle Scholar
  10. Degallier S, Righetti L, Natale L, Nori F, Metta G, Ijspeert A (2008) A modular bio-inspired architecture for movement generation for the infant-like robot iCub. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, Scottsdale, AZ, USAGoogle Scholar
  11. Fujii A, Saito N, Nakahira K, Ishiguro A, Eggenberger P (2002) Generation of an adaptive controller cpg for a quadruped robot with neuromodulation mechanism. In: IEEE international workshop on intelligent robots and systems, Lausanne, SwitzerlandGoogle Scholar
  12. Fujita M, Kitano H (1998) Development of an autonomous quadruped robot for robot entertainment. Auton Robots 5(1):7–18CrossRefGoogle Scholar
  13. Fukuoka Y, Kimura H, Cohen AH (2003) Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int J Robotics Res 22(2–3):187–202Google Scholar
  14. Fukuoka Y, Nakamura H, Kimura H (1999) Biologically-inspired adaptive dynamic walking of the quadruped on irregular terrain. In: International conference on control applications, Kohala Coast, HI, USAGoogle Scholar
  15. Golubovic D, Hu H (2003a) Ga-based gait generation of sony quadruped robots. In: IASTED international conference on artificial intelligence and applications, Benalmadena, SpainGoogle Scholar
  16. Golubovic D, Hu H (2003b) Parameter optimisation of an evolutionary algorithm for on-line gait generation of quadruped robots. In: IEEE international conference on industrial technologyGoogle Scholar
  17. Griffin TM, Kram R, Wickler SJ, Hoyt DF (2004) Biomechanical and energetic determinants of the walk trot transition in horses. J Exp Biol 207:4215–4223PubMedCrossRefGoogle Scholar
  18. Hebbel M, Nistico W, Fisseler D (2007) Learning in a high dimensional space: fast omnidirectional quadrupedal locomotion. In: Lakemeyer G, Sklar E, Sorrenti D, Takahashi T (eds) RoboCup 2006: Robot Soccer World Cup X, Lecture Notes in Computer Science, vol 4434. Springer, Berlin, pp 314–321CrossRefGoogle Scholar
  19. Heglund NC, Taylor CR (1988) Speed, stride frequency and energy cost per stride: how do they change with body size and gait? J Exp Biol 138:301–318PubMedGoogle Scholar
  20. Hirose S, Fukuda Y, Nagakubo A, Tsukagoshi H, Arikawa K, Endo G, Doi T, Hodoshima R (2009) Quadruped walking robots at tokio institute of technology. IEEE Robotics Autom Mag 16(2):104–114CrossRefGoogle Scholar
  21. Hoyt D, Taylor R (1981) Gait and the energetics of locomotion in horses. Nature 292:239240CrossRefGoogle Scholar
  22. Hu H, Gu D (2005) Hybrid learning architecture for fuzzy control of quadruped walking robots. Int J Intell Syst 20(2):131–152CrossRefGoogle Scholar
  23. Iida F, Gomez GJ, Pfeifer R (2005) Exploiting body dynamics for controlling a running quadruped robot. In: IEEE international conference on robotics and automation, Seattle, USAGoogle Scholar
  24. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653PubMedCrossRefGoogle Scholar
  25. Inagaki K, Kobayashi H (1993) A gait transition for quadruped walking machine. In: IEEE/RSJ international conference on intelligent robots and systems, Yokohama, JapanGoogle Scholar
  26. Ishii T, Masakado S, Ishii K (2004) Locomotion of a quadruped robot using cpg. In: IEEE International Joint Conference on Neural Networks, Budapest, HungaryGoogle Scholar
  27. Kim KY, Kwon O, Yeon JS, Park JH, (2006) Elliptic trajectory generation for galloping quadruped robots. In: IEEE international conference on robotics and biomimetics, Kunming, ChinaGoogle Scholar
  28. Kim HK, Ohung W, Won D, Park S, Kim TJ, Kim SS (2008) Foot trajectory generation of hydraulic quadruped robots on uneven terrain. IFAC World Congress, SeoulGoogle Scholar
  29. Kimura H, Shimoyama I, Miura H (1989) Dynamics in the dynamic walk of a quadruped robot. Adv Robotics 4(3):283–301CrossRefGoogle Scholar
  30. Kimura H, Fukuoka Y, Cohen AH (2007) Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robotics Res 26(5):475–490CrossRefGoogle Scholar
  31. Kramy DP, Orin DE (2003) Achieving periodic leg trajectories to evolve a quadruped gallop. In: IEEE international conference on robotics and automation, Tapei, TaiwanGoogle Scholar
  32. Lin JN, Song SM (2002) Modeling gait transitions of quadrupeds and their generalization with cmac neural networks. In: IEEE international conference on systems, man and cybernetics, Yasmine Hammamet, TunisiaGoogle Scholar
  33. Liu C, Chen Y, Zhang J, Chen Q (2009) Cpg driven locomotion control of quadruped robot. In: IEEE international conference on systems, man and cybernetics, San Antonio, TX, USAGoogle Scholar
  34. Moro FL, Tsagarakis NG, Caldwell DG (2011) A human-like walking for the COmpliant huMANoid COMAN based on CoM trajectory reconstruction from kinematic Motion Primitives. In: 11th IEEE-RAS international conference on humanoid robots, Bled, Slovenia, pp 364–370Google Scholar
  35. Moro FL, Tsagarakis NG, Caldwell DG (2012a) Efficient human-like walking for the COmpliant huMANoid COMAN based on kinematic Motion Primitives (kMPs). IEEE International Conference on Robotics and Automation, Saint Paul, MN, USAGoogle Scholar
  36. Moro FL, Tsagarakis NG, Caldwell DG (2012b) On the kinematic Motion Primitives (kMPs): theory and application. Frontiers Neurorobotics 6(10):1–18Google Scholar
  37. Nichol JG, Singh SPN, Waldron KJ, Orin DE (2004) System design of a quadrupedal galloping machine. Int J Robotics Res 23(10–11): 1013–1027Google Scholar
  38. Pongas D, Mistry M, Schaal S (2007) A robust quadruped walking gait for traversing rough terrain. In: IEEE international conference on robotics and automation, Roma, ItalyGoogle Scholar
  39. Poulakakis I, Smith JA, Buehler M (2005) Modeling and experiments of untethered quadrupedal running with a bounding gait: the scout ii robot. Int J Robotics Res 24(4):239256Google Scholar
  40. Raibert M (1986) Legged robots that balance. MIT Press, CambridgeGoogle Scholar
  41. Raibert MH (1990) Trotting, pacing and bounding by a quadruped robot. J Biomech 23(1):8398Google Scholar
  42. Raibert M, Blankespoor K, Nelson G, Playter R, the BigDog Team (2008) Bigdog, the roughterrain quadruped robot. IFAC World Congress, SeoulGoogle Scholar
  43. Rebula JR, Neuhaus PD, Bonnlander BV, Johnson MJ, Pratt JE (2007) A controller for the littledog quadruped walking on rough terrain. In: IEEE international conference on robotics and automation, Roma, ItalyGoogle Scholar
  44. Righetti L, Ijspeert AJ (2008) Pattern generators with sensory feedback for the control of quadruped locomotion. In: IEEE international conference on robotics and automation, Pasadena, CA, USAGoogle Scholar
  45. Rutishauser S, Sproewitz A, Righetti L, Ijspeert AJ (2008) Passive compliant quadruped robot using central pattern generators for locomotion control. In: IEEE international conference on biomedical robotics and biomechatronics, Scottsdale, AZ, USAGoogle Scholar
  46. Sakakibara Y, Kan K, Hosoda Y, Hattori M, Fujie M (1990) Foot trajectory for a quadruped walking machine. In: IEEE international workshop on intelligent robots and systems, Ibaraki, JapanGoogle Scholar
  47. Semini C, Tsagarakis NG, Guglielmino E, Focchi M, Cannella F, Caldwell DG (2011) Design of hyq a hydraulically and electrically actuated quadruped robot. Proc Inst Mech Eng I 225(1):831–849Google Scholar
  48. Son Y, Kamano T, Yasuno T, Suzuki T, Harada H (2006) Generation of adaptive gait patterns for quadruped robot with cpg network including motor dynamic model. Electr Eng Jpn 155(1):35–43CrossRefGoogle Scholar
  49. Spröwitz A, Tuleu A, Vespignani M, Ajallooeian M, Badri E, Ijspeert AJ (2012) Towards dynamic trot gait locomotion—design, control, and experiments with cheetah-cub, a compliant quadruped robot (under review)Google Scholar
  50. Tsujita K, Toui H, Tsuchiya K (2005) Dynamic turning control of a quadruped locomotion robot using oscillators. Adv Robotics 19(10):1115–1133CrossRefGoogle Scholar
  51. Vilensky JA, Libii JN, Moore AM (1991) Trot–gallop gait transitions in quadrupeds. Physiol Behav 50(4):835–842PubMedCrossRefGoogle Scholar
  52. Witte H, Hackert R, Ilg W, Biltzinger J, Schillinger N, Biedermann F, Jergas M, Preuschoft H, Fischer MS (2003) Quadrupedal mammals as paragons for walking machines. In: Proceedings of the International Symposium on Adaptive Motion of Animals and Machines, KyotoGoogle Scholar
  53. Zhang X, Zheng H, Guan X, Chifeng Z, Zhao L (2005) A biological inspired quadruped robot: structure and control. In: IEEE international conference on robotics and biomimetics, Hong Kong, ChinaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Federico L. Moro
    • 1
  • Alexander Spröwitz
    • 2
  • Alexandre Tuleu
    • 2
  • Massimo Vespignani
    • 2
  • Nikos G. Tsagarakis
    • 1
  • Auke J. Ijspeert
    • 2
  • Darwin G. Caldwell
    • 1
  1. 1.Department of Advanced RoboticsIstituto Italiano di Tecnologia (IIT)GenoaItaly
  2. 2.Biorobotics LaboratoryÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations