Skip to main content

Advertisement

Log in

Accommodation response and spherical aberration during orthokeratology

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the changes in the accommodative response and in the corneal and internal spherical aberration during 3 months of wear of orthokeratology lenses from the baseline.

Methods

Fifty children aged 8 to 17 were recruited for a prospective study and were fitted with orthokeratology lenses. Refraction without cycloplegia, high and low uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), accommodation lag, horizontal near phoria without correction, corneal topography, corneal, and total wavefront aberration were performed at baseline, 1 day, 1 week, 1 month, and 3 months. Data were analyzed by Student’s t test for related samples, repeated measures ANOVA test, and Pearson correlation test.

Results

The spherical equivalent (SE) before and after 3 months was − 3.33 ± 1.60 D and − 0.30 ± 0.46 D, respectively. Accommodation lag was 0.53 ± 0.38 D and 0.20 ± 0.33 D at baseline and at 3 months, respectively. A moderate correlation between lag at the baseline and its change between baseline and the 3-month visit was found (P < 0.05; R = 0.748). The spherical aberration (SA) increased for anterior corneal and total measurement, being statistically significant for all visits (P < 0.05). The internal SA decreased: − 0.105 ± 0.006 at baseline and − 0.196 ± 0.203 at 1 week (P < 0.05). No difference between baseline and the follow-up visits in posterior corneal SA was found (P > 0.05)

Conclusion

The negative SA of the lens increases during OK treatment compensated for the increase of the anterior corneal surface positive SA, in addition to increasing the accommodative response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Williams KM, Verhoeven VJ, Cumberland P, Bertelsen G, Wolfram C, Buitendijk GH, Hofman A, van Duijn CM, Vingerling JR, Kuijpers RW, Hohn R, Mirshahi A, Khawaja AP, Luben RN, Erke MG, von Hanno T, Mahroo O, Hogg R, Gieger C, Cougnard-Gregoire A, Anastasopoulos E, Bron A, Dartigues JF, Korobelnik JF, Creuzot-Garcher C, Topouzis F, Delcourt C, Rahi J, Meitinger T, Fletcher A, Foster PJ, Pfeiffer N, Klaver CC, Hammond CJ (2015) Prevalence of refractive error in Europe: the European Eye Epidemiology (E(3)) Consortium. Eur J Epidemiol 30:305–315. https://doi.org/10.1007/s10654-015-0010-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pan CW, Cheng CY, Sabanayagam C, Chew M, Lam J, Ang M, Wong TY (2014) Ethnic variation in central corneal refractive power and steep cornea in Asians. Ophthalmic Epidemiol 21:99–105. https://doi.org/10.3109/09286586.2014.887735

    Article  PubMed  Google Scholar 

  3. Pan CW, Ramamurthy D, Saw SM (2012) Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt 32:3–16. https://doi.org/10.1111/j.1475-1313.2011.00884.x

    Article  Google Scholar 

  4. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 123:1036–1042. https://doi.org/10.1016/j.ophtha.2016.01.006

    Article  Google Scholar 

  5. Tsai DC, Fang SY, Huang N, Hsu CC, Chen SY, Chiu AW, Liu CJ (2016) Myopia Development Among Young Schoolchildren: The Myopia Investigation Study in Taipei. Invest Ophthalmol Vis Sci 57:6852–6860. https://doi.org/10.1167/iovs.16-20288

    Article  PubMed  Google Scholar 

  6. Saw SM, Gazzard G, Shih-Yen EC, Chua WH (2005) Myopia and associated pathological complications. Ophthalmic Physiol Opt 25:381–391. https://doi.org/10.1111/j.1475-1313.2005.00298.x

    Article  Google Scholar 

  7. Flitcroft DI (2012) The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res 31:622–660. https://doi.org/10.1016/j.preteyeres.2012.06.004

    Article  CAS  Google Scholar 

  8. Chen CY, Scurrah KJ, Stankovich J, Garoufalis P, Dirani M, Pertile KK, Richardson AJ, Mitchell P, Baird PN (2007) Heritability and shared environment estimates for myopia and associated ocular biometric traits: the Genes in Myopia (GEM) family study. Hum Genet 121:511–520. https://doi.org/10.1007/s00439-006-0312-0

    Article  PubMed  Google Scholar 

  9. Cooper J, Tkatchenko AV (2018) A Review of Current Concepts of the Etiology and Treatment of Myopia. Eye & contact lens 44:231–247. https://doi.org/10.1097/icl.0000000000000499

    Article  Google Scholar 

  10. Tedja MS, Haarman AEG, Meester-Smoor MA, Kaprio J, Mackey DA, Guggenheim JA, Hammond CJ, Verhoeven VJM, Klaver CCW (2019) IMI - Myopia Genetics Report. Invest Ophthalmol Vis Sci 60:M89–m105. https://doi.org/10.1167/iovs.18-25965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng CY, Schache M, Ikram MK, Young TL, Guggenheim JA, Vitart V, MacGregor S, Verhoeven VJ, Barathi VA, Liao J, Hysi PG, Bailey-Wilson JE, St Pourcain B, Kemp JP, McMahon G, Timpson NJ, Evans DM, Montgomery GW, Mishra A, Wang YX, Wang JJ, Rochtchina E, Polasek O, Wright AF, Amin N, van Leeuwen EM, Wilson JF, Pennell CE, van Duijn CM, de Jong PT, Vingerling JR, Zhou X, Chen P, Li R, Tay WT, Zheng Y, Chew M, Burdon KP, Craig JE, Iyengar SK, Igo RP Jr, Lass JH Jr, Chew EY, Haller T, Mihailov E, Metspalu A, Wedenoja J, Simpson CL, Wojciechowski R, Hohn R, Mirshahi A, Zeller T, Pfeiffer N, Lackner KJ, Bettecken T, Meitinger T, Oexle K, Pirastu M, Portas L, Nag A, Williams KM, Yonova-Doing E, Klein R, Klein BE, Hosseini SM, Paterson AD, Makela KM, Lehtimaki T, Kahonen M, Raitakari O, Yoshimura N, Matsuda F, Chen LJ, Pang CP, Yip SP, Yap MK, Meguro A, Mizuki N, Inoko H, Foster PJ, Zhao JH, Vithana E, Tai ES, Fan Q, Xu L, Campbell H, Fleck B, Rudan I, Aung T, Hofman A, Uitterlinden AG, Bencic G, Khor CC, Forward H, Parssinen O, Mitchell P, Rivadeneira F, Hewitt AW, Williams C, Oostra BA, Teo YY, Hammond CJ, Stambolian D, Mackey DA, Klaver CC, Wong TY, Saw SM, Baird PN (2013) Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. Am J Hum Genet 93:264–277. https://doi.org/10.1016/j.ajhg.2013.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lyhne N, Sjolie AK, Kyvik KO, Green A (2001) The importance of genes and environment for ocular refraction and its determiners: a population based study among 20-45 year old twins. Br J Ophthalmol 85:1470–1476

    Article  CAS  Google Scholar 

  13. Pacella R, McLellan J, Grice K, Del Bono EA, Wiggs JL, Gwiazda JE (1999) Role of genetic factors in the etiology of juvenile-onset myopia based on a longitudinal study of refractive error. Optom Vis Sci 76:381–386

    Article  CAS  Google Scholar 

  14. Ip JM, Saw SM, Rose KA, Morgan IG, Kifley A, Wang JJ, Mitchell P (2008) Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci 49:2903–2910. https://doi.org/10.1167/iovs.07-0804

    Article  PubMed  Google Scholar 

  15. Xiong S, Sankaridurg P, Naduvilath T, Zang J, Zou H, Zhu J, Lv M, He X, Xu X (2017) Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Acta Ophthalmol 95:551–566. https://doi.org/10.1111/aos.13403

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wildsoet CF, Chia A, Cho P, Guggenheim JA, Polling JR, Read S, Sankaridurg P, Saw SM, Trier K, Walline JJ, Wu PC, Wolffsohn JS (2019) IMI - Interventions Myopia Institute: Interventions for Controlling Myopia Onset and Progression Report. Invest Ophthalmol Vis Sci 60:M106–m131. https://doi.org/10.1167/iovs.18-25958

    Article  PubMed  Google Scholar 

  17. Berntsen DA, Mutti DO, Zadnik K (2010) Study of theories about myopia progression (STAMP) design and baseline data. Optom Vis Sci 87:823–832. https://doi.org/10.1097/OPX.0b013e3181f6f776

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gwiazda J, Biiuer J, Grice K, Thorn F (1997) Precursors of myopia in children. Investig Ophthalmol Vis Sci 38

  19. Gwiazda J, Thorn F, Bauer J, Held R (1993) Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci 34:690–694

    CAS  PubMed  Google Scholar 

  20. Gwiazda JE, Hyman L, Norton TT, Hussein MEM, Marsh-Tootle W, Manny R, Wang Y, Everett D (2004) Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Investig Ophthalmol Vis Sci 45:2143–2151. https://doi.org/10.1167/iovs.03-1306

    Article  Google Scholar 

  21. Manny RE, Chandler DL, Scheiman MM, Gwiazda JE, Cotter SA, Everett DF, Holmes JM, Hyman LG, Kulp MT, Lyon DW, Marsh-Tootle W, Matta N, Melia BM, Norton TT, Repka MX, Silbert DI, Weissberg EM, Gwiazda J, Chandler D, Cotter S, Hyman L, Kulp M, Melia M, Norton T, Scheiman M, Silbert D, Weissberg E (2009) Accommodative lag by autorefraction and two dynamic retinoscopy methods. Optom Vis Sci 86:233–243. https://doi.org/10.1097/OPX.0b013e318197180c

    Article  PubMed  Google Scholar 

  22. Mutti DO, Mitchell GL, Hayes JR, Jones LA, Moeschberger ML, Cotter SA, Kleinstein RN, Manny RE, Twelker JD, Zadnik K, Hullett S, Sims J, Weeks R, Williams S, Calvin L, Shipp MD, Friedman NE, Qualley P, Wickum SM, Kim A, Mathis B, Batres M, Henry S, Wensveen JM, Crossnoe CJ, Tom SL, McLeod JA, Quiralte JC, Yu JA, Chu RJ, Barnhardt CN, Chang J, Huang K, Bridgeford R, Chu C, Kwon S, Lee G, Lee J, Lee R, Maeda R, Emerson R, Leonhardt T, Messer D, Flores D, Bhakta R, Malone JM, Sheng H, Omlor H, Rahmani M, Brickman J, Wang A, Arner P, Taylor S, Nguyen MT, Walker TW, Barrett L, Sinnott L, Wessel P, Swartzendruber JN, Everett DF (2006) Accommodative lag before and after the onset of myopia. Investig Ophthalmol Vis Sci 47:837–846. https://doi.org/10.1167/iovs.05-0888

    Article  Google Scholar 

  23. Gwiazda J, Grice K, Thorn F (1999) Response AC/A ratios are elevated in myopic children. Ophthalmic Physiol Opt 19:173–179

    Article  CAS  Google Scholar 

  24. Mutti DO, Mitchell GL, Jones-Jordan LA, Cotter SA, Kleinstein RN, Manny RE, Twelker JD, Zadnik K (2017) The response AC/A ratio before and after the onset of myopia. Investig Ophthalmol Vis Sci 58:1594–1602. https://doi.org/10.1167/iovs.16-19093

    Article  Google Scholar 

  25. Wu PC, Chuang MN, Choi J, Chen H, Wu G, Ohno-Matsui K, Jonas JB, Cheung CMG (2018) Update in myopia and treatment strategy of atropine use in myopia control. Eye (Lond) 33:3–13. https://doi.org/10.1038/s41433-018-0139-7

    Article  Google Scholar 

  26. Tarutta EP, Iomdina EN, Kvaratskheliya NG, Milash SV, Kruzhkova GV (2017) Peripheral refraction: cause or effect of refraction development? Vestn oftalmol 133:70–74. https://doi.org/10.17116/oftalma2017133170-74

    Article  CAS  PubMed  Google Scholar 

  27. Yang X, Li Z, Zeng J (2016) A Review of the Potential Factors Influencing Myopia Progression in Children Using Orthokeratology. Asia Pac J Ophthalmol:5, 429–433. https://doi.org/10.1097/apo.0000000000000242

    Article  Google Scholar 

  28. Paune J, Thivent S, Armengol J, Quevedo L, Faria-Ribeiro M, Gonzalez-Meijome JM (2016) Changes in Peripheral Refraction, Higher-Order Aberrations, and Accommodative Lag With a Radial Refractive Gradient Contact Lens in Young Myopes. Eye & contact lens 42:380–387. https://doi.org/10.1097/icl.0000000000000222

    Article  Google Scholar 

  29. Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H, Saw SM, Chen H, Bao F, Zhao Y, Hu L, Li X, Gao R, Lu W, Du Y, Jinag Z, Yu A, Lian H, Jiang Q, Yu Y, Qu J (2016) Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-analysis. Ophthalmology 123:697–708. https://doi.org/10.1016/j.ophtha.2015.11.010

    Article  PubMed  Google Scholar 

  30. Wolffsohn JS, Calossi A, Cho P, Gifford K, Jones L, Li M, Lipener C, Logan NS, Malet F, Matos S, Meijome JM, Nichols JJ, Orr JB, Santodomingo-Rubido J, Schaefer T, Thite N, van der Worp E, Zvirgzdina M (2016) Global trends in myopia management attitudes and strategies in clinical practice. Contact lens & anterior eye 39:106–116. https://doi.org/10.1016/j.clae.2016.02.005

    Article  Google Scholar 

  31. Kang P (2018) Optical and pharmacological strategies of myopia control. Clin Exp Optom 101:321–332. https://doi.org/10.1111/cxo.12666

    Article  PubMed  Google Scholar 

  32. Lipson MJ, Brooks MM, Koffler BH (2018) The Role of Orthokeratology in Myopia Control: A Review. Eye & contact lens 44:224–230. https://doi.org/10.1097/icl.0000000000000520

    Article  Google Scholar 

  33. Lee YC, Wang JH, Chiu CJ (2017) Effect of Orthokeratology on myopia progression: twelve-year results of a retrospective cohort study. BMC Ophthalmol 17:243. https://doi.org/10.1186/s12886-017-0639-4

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hiraoka T, Sekine Y, Okamoto F, Mihashi T, Oshika T (2018) Safety and efficacy following 10-years of overnight orthokeratology for myopia control. Ophthalmic Physiol Opt 38:281–289. https://doi.org/10.1111/opo.12460

    Article  PubMed  Google Scholar 

  35. Li SM, Kang MT, Wu SS, Liu LR, Li H, Chen Z, Wang N (2016) Efficacy, Safety and Acceptability of Orthokeratology on Slowing Axial Elongation in Myopic Children by Meta-Analysis. Curr Eye Res 41:600–608. https://doi.org/10.3109/02713683.2015.1050743

    Article  PubMed  Google Scholar 

  36. Anstice NS, Phillips JR (2011) Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology 118:1152–1161. https://doi.org/10.1016/j.ophtha.2010.10.035

    Article  PubMed  Google Scholar 

  37. Ji Q, Yoo YS, Alam H, Yoon G (2018) Through-focus optical characteristics of monofocal and bifocal soft contact lenses across the peripheral visual field. Ophthalmic Physiol Opt 38:326–336. https://doi.org/10.1111/opo.12452

    Article  PubMed  Google Scholar 

  38. Liu YM, Xie P (2016) The Safety of Orthokeratology--A Systematic Review. Eye & contact lens 42:35–42. https://doi.org/10.1097/icl.0000000000000219

    Article  Google Scholar 

  39. Swarbrick HA, Wong G, O'Leary DJ (1998) Corneal response to orthokeratology. Optom Vis Sci 75:791–799

    Article  CAS  Google Scholar 

  40. Joslin CE, Wu SM, McMahon TT, Shahidi M (2003) Higher-order wavefront aberrations in corneal refractive therapy. Optom Vis Sci 80:805–811

    Article  Google Scholar 

  41. Hiraoka T, Matsumoto Y, Okamoto F, Yamaguchi T, Hirohara Y, Mihashi T, Oshika T (2005) Corneal higher-order aberrations induced by overnight orthokeratology. Am J Ophthalmol 139:429–436. https://doi.org/10.1016/j.ajo.2004.10.006

    Article  PubMed  Google Scholar 

  42. Faria-Ribeiro M, Belsue RN, López-Gil N, González-Meíjome JM (2016) Morphology, topography, and optics of the orthokeratology cornea. J Biomed Opt 21. https://doi.org/10.1117/1.JBO.21.7.075011

    Article  Google Scholar 

  43. Gifford P, Li M, Lu H, Miu J, Panjaya M, Swarbrick HA (2013) Corneal versus ocular aberrations after overnight orthokeratology. Optom Vis Sci 90:439–447. https://doi.org/10.1097/OPX.0b013e31828ec594

    Article  PubMed  Google Scholar 

  44. Goldstone RN, Yildiz EH, Fan VC, Asbell PA (2010) Changes in higher order wavefront aberrations after contact lens corneal refractive therapy and LASIK surgery. J Refract Surg 26:348–355. https://doi.org/10.3928/1081597x-20100218-03

    Article  PubMed  Google Scholar 

  45. Chen Q, Li M, Yuan Y, Me R, Yu Y, Shi G, Ke B (2017) Interaction between Corneal and Internal Ocular Aberrations Induced by Orthokeratology and Its Influential Factors. Biomed Res Int 2017:3703854. https://doi.org/10.1155/2017/3703854

    Article  PubMed  PubMed Central  Google Scholar 

  46. de Jong P (2018) Myopia: its historical contexts. Br J Ophthalmol 102:1021–1027. https://doi.org/10.1136/bjophthalmol-2017-311625

    Article  PubMed  PubMed Central  Google Scholar 

  47. Harb E, Thorn F, Troilo D (2006) Characteristics of accommodative behavior during sustained reading in emmetropes and myopes. Vis Res 46:2581–2592. https://doi.org/10.1016/j.visres.2006.02.006

    Article  PubMed  Google Scholar 

  48. McBrien NA, Millodot M (1987) The relationship between tonic accommodation and refractive error. Invest Ophthalmol Vis Sci 28:997–1004

    CAS  PubMed  Google Scholar 

  49. McBrien NA, Millodot M (1986) The effect of refractive error on the accommodative response gradient. Ophthalmic Physiol Optics 6:145–149

    CAS  Google Scholar 

  50. Millodot M (2015) The effect of refractive error on the accommodative response gradient: A summary and update. Ophthalmic Physiol Opt 35:607–612. https://doi.org/10.1111/opo.12241

    Article  PubMed  Google Scholar 

  51. Allen PM, O'Leary DJ (2006) Accommodation functions: Co-dependency and relationship to refractive error. Vis Res 46:491–505. https://doi.org/10.1016/j.visres.2005.05.007

    Article  PubMed  Google Scholar 

  52. Winawer J, Zhu X, Choi J, Wallman J (2005) Ocular compensation for alternating myopic and hyperopic defocus. Vis Res 45:1667–1677. https://doi.org/10.1016/j.visres.2004.12.013

    Article  PubMed  Google Scholar 

  53. Seidemann A, Schaeffel F, Guirao A, Lopez-Gil N, Artal P (2002) Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects. J Opt Soc Am A Opt Image Sci Vis 19:2363–2373

    Article  Google Scholar 

  54. Schaeffel F, Glasser A, Howland HC (1988) Accommodation, refractive error and eye growth in chickens. Vis Res 28:639–657

    Article  CAS  Google Scholar 

  55. Hung LF, Crawford ML, Smith EL (1995) Spectacle lenses alter eye growth and the refractive status of young monkeys. Nat Med 1:761–765

    Article  CAS  Google Scholar 

  56. Smith EL 3rd, Ramamirtham R, Qiao-Grider Y, Hung LF, Huang J, Kee CS, Coats D, Paysse E (2007) Effects of foveal ablation on emmetropization and form-deprivation myopia. Invest Ophthalmol Vis Sci 48:3914–3922. https://doi.org/10.1167/iovs.06-1264

    Article  PubMed  PubMed Central  Google Scholar 

  57. Smith EL 3rd, Kee CS, Ramamirtham R, Qiao-Grider Y, Hung LF (2005) Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci 46:3965–3972. https://doi.org/10.1167/iovs.05-0445

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hiraoka T, Kakita T, Okamoto F, Oshika T (2015) Influence of ocular wavefront aberrations on axial length elongation in myopic children treated with overnight orthokeratology. Ophthalmology 122:93–100. https://doi.org/10.1016/j.ophtha.2014.07.042

    Article  PubMed  Google Scholar 

  59. Mutti DO, Sinnott LT, Mitchell GL, Jones-Jordan LA, Moeschberger ML, Cotter SA, Kleinstein RN, Manny RE, Twelker JD, Zadnik K (2011) Relative peripheral refractive error and the risk of onset and progression of myopia in children. Invest Ophthalmol Vis Sci 52:199–205. https://doi.org/10.1167/iovs.09-4826

    Article  PubMed  PubMed Central  Google Scholar 

  60. Atchison DA, Li SM, Li H, Li SY, Liu LR, Kang MT, Meng B, Sun YY, Zhan SY, Mitchell P, Wang N (2015) Relative Peripheral Hyperopia Does Not Predict Development and Progression of Myopia in Children. Invest Ophthalmol Vis Sci 56:6162–6170. https://doi.org/10.1167/iovs.15-17200

    Article  PubMed  Google Scholar 

  61. Wolffsohn JS, Kollbaum PS, Berntsen DA, Atchison DA, Benavente A, Bradley A, Buckhurst H, Collins M, Fujikado T, Hiraoka T, Hirota M, Jones D, Logan NS, Lundström L, Torii H, Read SA, Naidoo K (2019) IMI – Clinical Myopia Control Trials and Instrumentation ReportIMI – Clinical Myopia Control Trials and Instrumentation. Invest Ophthalmol Vis Sci 60:M132–M160. https://doi.org/10.1167/iovs.18-25955

    Article  PubMed  Google Scholar 

  62. Felipe-Marquez G, Nombela-Palomo M, Cacho I, Nieto-Bona A (2015) Accommodative changes produced in response to overnight orthokeratology. Graefes Arch Clin Exp Ophthalmol 253:619–626. https://doi.org/10.1007/s00417-014-2865-2

    Article  PubMed  Google Scholar 

  63. Felipe-Marquez G, Nombela-Palomo M, Palomo-Alvarez C, Cacho I, Nieto-Bona A (2017) Binocular function changes produced in response to overnight orthokeratology. Graefes Arch Clin Ophthalmol 255:179–188. https://doi.org/10.1007/s00417-016-3554-0

    Article  Google Scholar 

  64. Gifford K, Gifford P, Hendicott PL, Schmid KL (2017) Near binocular visual function in young adult orthokeratology versus soft contact lens wearers. Contact lens & anterior eye 40:184–189. https://doi.org/10.1016/j.clae.2017.01.003

    Article  Google Scholar 

  65. Han X, Xu D, Ge W, Wang Z, Li X, Liu W (2017) A Comparison of the Effects of Orthokeratology Lens, Medcall Lens, and Ordinary Frame Glasses on the Accommodative Response in Myopic Children. Eye & contact lens. https://doi.org/10.1097/icl.0000000000000390

    Article  Google Scholar 

  66. Yang Y, Wang L, Li P, Li J (2018) Accommodation function comparison following use of contact lens for orthokeratology and spectacle use in myopic children: a prospective controlled trial. Int J Ophthalmol 11:1234–1238. https://doi.org/10.18240/ijo.2018.07.26

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kang P, Watt K, Chau T, Zhu J, Evans BJW, Swarbrick H (2018) The impact of orthokeratology lens wear on binocular vision and accommodation: A short-term prospective study. Cont Lens Anterior Eye 41:501–506. https://doi.org/10.1016/j.clae.2018.08.002

    Article  PubMed  Google Scholar 

  68. Cho P, Cheung SW, Mountford J, White P (2008) Good clinical practice in orthokeratology. Cont Lens Anterior Eye 31:17–28. https://doi.org/10.1016/j.clae.2007.07.003

    Article  PubMed  Google Scholar 

  69. World Medical A (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194. https://doi.org/10.1001/jama.2013.281053

    Article  CAS  Google Scholar 

  70. Antona B, Sanchez I, Barrio A, Barra F, Gonzalez E (2009) Intra-examiner repeatability and agreement in accommodative response measurements. Ophthalmic Physiol Opt 29:606–614. https://doi.org/10.1111/j.1475-1313.2009.00679.x

    Article  CAS  PubMed  Google Scholar 

  71. del Pilar CM, Garcia-Munoz A, Garcia-Bernabeu JR, Lopez A (1999) Comparison between MEM and Nott dynamic retinoscopy. Optom Vis Sci 76:650–655

    Article  Google Scholar 

  72. Nguyen AT, Wayne JL, Ravikumar A, Manny RE, Anderson HA (2018) Accommodative accuracy by retinoscopy versus autorefraction spherical equivalent or horizontal meridian power. Clin Exp Optom 101:778–785. https://doi.org/10.1111/cxo.12678

    Article  PubMed  Google Scholar 

  73. Lackner B, Schmidinger G, Skorpik C (2005) Validity and repeatability of anterior chamber depth measurements with Pentacam and Orbscan. Optom Vis Sci 82:858–861

    Article  Google Scholar 

  74. Jonuscheit S (2014) Data extraction and reporting strategies of studies assessing non-central corneal thickness by Pentacam: a review. Contact lens & anterior eye 37:323–330. https://doi.org/10.1016/j.clae.2014.06.004

    Article  Google Scholar 

  75. Crawford AZ, Patel DV, McGhee CN (2013) Comparison and repeatability of keratometric and corneal power measurements obtained by Orbscan II, Pentacam, and Galilei corneal tomography systems. Am J Ophthalmol 156:53–60. https://doi.org/10.1016/j.ajo.2013.01.029

    Article  PubMed  Google Scholar 

  76. Nieto-Bona A, Gonzalez-Mesa A, Nieto-Bona MP, Villa-Collar C, Lorente-Velazquez A (2011) Short-term effects of overnight orthokeratology on corneal cell morphology and corneal thickness. Cornea 30:646–654. https://doi.org/10.1097/ICO.0b013e31820009bc

    Article  PubMed  Google Scholar 

  77. Marcotte-Collard R, Simard P, Michaud L (2018) Analysis of Two Orthokeratology Lens Designs and Comparison of Their Optical Effects on the Cornea. Eye & contact lens. https://doi.org/10.1097/icl.0000000000000495

    Article  Google Scholar 

  78. Swarbrick HA (2006) Orthokeratology review and update. Clin Exp Optom 89:124–143. https://doi.org/10.1111/j.1444-0938.2006.00044.x

    Article  PubMed  Google Scholar 

  79. Lu D, Gu T, Lin W, Li N, Gong B, Wei R (2018) Efficacy of Trial Fitting and Software Fitting for Orthokeratology Lens: One-Year Follow-Up Study. Eye Contact Lens 44:339–343. https://doi.org/10.1097/ICL.0000000000000539

    Article  PubMed  Google Scholar 

  80. Sorbara L, Fonn D, Simpson T, Lu F, Kort R (2005) Reduction of myopia from corneal refractive therapy. Optom Vis Sci 82:512–518

    Article  Google Scholar 

  81. Nichols JJ, Marsich MM, Nguyen M, Barr JT, Bullimore MA (2000) Overnight orthokeratology. Optom Vis Sci 77:252–259

    Article  CAS  Google Scholar 

  82. Maldonado-Codina C, Efron S, Morgan P, Hough T, Efron N (2005) Empirical versus trial set fitting systems for accelerated orthokeratology. Eye Contact lens 31:137–147

    Article  Google Scholar 

  83. Sanker N, Prabhu A, Ray A (2012) A comparison of near-dissociated heterophoria tests in free space. Clin Exp Optom 95:638–642. https://doi.org/10.1111/j.1444-0938.2012.00785.x

    Article  PubMed  Google Scholar 

  84. Philip K, Sankaridurg P, Holden B, Ho A, Mitchell P (2014) Influence of higher order aberrations and retinal image quality in myopisation of emmetropic eyes. Vis Res 105:233–243. https://doi.org/10.1016/j.visres.2014.10.003

    Article  PubMed  Google Scholar 

  85. Ren Q, Yue H, Zhou Q (2016) Effects of orthokeratology lenses on the magnitude of accommodative lag and accommodative convergence/accommodation. Zhong Nan Da Xue Xue Bao Yi Xue Ban 41:169–173. https://doi.org/10.11817/j.issn.1672-7347.2016.02.009

    Article  PubMed  Google Scholar 

  86. Tarrant J, Liu Y, Wildsoet CF (2009) Orthokeratology Can Decrease the Accommodative Lag in Myopes. Invest Ophthalmol Vis Sci 50:4294–4294

    Google Scholar 

  87. Charman WN, Mountford J, Atchison DA, Markwell EL (2006) Peripheral refraction in orthokeratology patients. Optom Vis Sci 83:641–648. https://doi.org/10.1097/01.opx.0000232840.66716.af

    Article  PubMed  Google Scholar 

  88. Ren Q, Yue H, Zhou Q (2016) Effects of orthokeratology lenses on the magnitude of accommodative lag and accommodativeconvergence/accommodation. Zhong Nan Da Xue Xue Bao Yi Xue Ban 41:169–173. https://doi.org/10.11817/j.issn.1672-7347.2016.02.009

    Article  PubMed  Google Scholar 

  89. Lian Y, Shen M, Huang S, Yuan Y, Wang Y, Zhu D, Jiang J, Mao X, Wang J, Lu F (2014) Corneal reshaping and wavefront aberrations during overnight orthokeratology. Eye & contact lens 40:161–168. https://doi.org/10.1097/icl.0000000000000031

    Article  Google Scholar 

  90. Yoon JH, Swarbrick HA (2013) Posterior corneal shape changes in myopic overnight orthokeratology. Optom Vis Sci 90:196–204. https://doi.org/10.1097/OPX.0b013e31828121eb

    Article  PubMed  Google Scholar 

  91. Tsukiyama J, Miyamoto Y, Higaki S, Fukuda M, Shimomura Y (2008) Changes in the anterior and posterior radii of the corneal curvature and anterior chamber depth by orthokeratology. Eye & contact lens 34:17–20. https://doi.org/10.1097/ICL.0b013e3180515299

    Article  Google Scholar 

  92. Owens H, Garner LF, Craig JP, Gamble G (2004) Posterior corneal changes with orthokeratology. Optom Vis Sci 81:421–426

    Article  Google Scholar 

  93. Lopez-Gil N, Fernandez-Sanchez V (2010) The change of spherical aberration during accommodation and its effect on the accommodation response. J Vis 10:12. https://doi.org/10.1167/10.13.12

    Article  PubMed  Google Scholar 

  94. Berntsen DA, Barr JT, Mitchell GL (2005) The effect of overnight contact lens corneal reshaping on higher-order aberrations and best-corrected visual acuity. Optom Vis Sci 82:490–497

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Carracedo.

Ethics declarations

Conflicts of interest

Laura Batres declares that he/she has no conflict of interest. Sara Peruzzo declares that he/she has no conflict of interest. Maria Serramito declares that he/she has no conflict of interest. Gonzalo Carracedo declares that he/she has no conflict of interest.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

The study was approved by the ethical committee of Hospital Clinico San Carlos, being the approval document number: 16/371-E

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batres, L., Peruzzo, S., Serramito, M. et al. Accommodation response and spherical aberration during orthokeratology. Graefes Arch Clin Exp Ophthalmol 258, 117–127 (2020). https://doi.org/10.1007/s00417-019-04504-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04504-x

Keywords

Navigation