Skip to main content
Log in

Biochemical markers for severity and risk in GBA and LRRK2 Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

The phenotype of Parkinson’s disease (PD) is variable with mutations in genes such as LRRK2 and GBA explaining part of this heterogeneity. Additional genetic and environmental factors contribute to disease variability.

Objective

To assess the association between biochemical markers, PD severity and probability score for prodromal PD, among GBA and LRRK2 mutation carriers.

Methods

Levels of uric acid, vitamin D, C-reactive protein, microalbumin/creatinine ratio (ACR), white blood count (WBC), hemoglobin, platelets, neutrophil/lymphocyte ratio and estimated glomerular filtration rate (eGFR) were assessed from patients with PD and non-manifesting carriers (NMC) of mutations in GBA and LRRK2, together with disease related questionnaires enabling the construction of the MDS prodromal probability score.

Result

A total of 241 patients with PD: 105 idiopathic PD (iPD), 49 LRRK2-PD and 87 GBA-PD and 412 non-manifesting subjects; 74 LRRK2-NMC, 118 GBA-NMC and 220 non-manifesting non-carriers (NMNC), participated in this study. No significant differences in biochemical measures were detected among patients with PD or non-manifesting carriers. Among GBA-PD patients, worse motor performance was associated with ACR (B = 4.68, 95% CI (1.779–7.559); p = 0.002). The probability score for prodromal PD among all non-manifesting participants was associated with eGFR; NMNC (B = − 0.531 95% CI (− 0.879 to − 0.182); p < 0.001, LRRK2-NMC (B = − 1.014 95% CI (− 1.663 to − 0.366); p < 0.001) and GBA-NMC (B = − 0.686 95% CI (1.300 to − 0.071); p = 0.029).

Conclusion

Sub-clinical renal impairment is associated with increased likelihood for prodromal PD regardless of genetic status. While the mechanism behind this finding needs further elucidation, it suggests that kidney function might play a role in PD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

As this is an industry funded work, anonymized data will be made available with Biogens’ consent.

References

  1. Gan-Or Z, Bar-Shira A, Mirelman A, Gurevich T, Kedmi M, Giladi N, Orr-Urtreger A (2010) LRRK2 and GBA mutations differentially affect the initial presentation of Parkinson disease. Neurogenetics 11(1):121–125. https://doi.org/10.1007/s10048-009-0198-9

    Article  CAS  PubMed  Google Scholar 

  2. Kozlovski T, Mitelpunkt A, Thaler A, Gurevich T, Orr-Urtreger A, Gana-Weisz M, Shachar N, Galili T, Marcus-Kalish M, Bressman S, Marder K, Giladi N, Benjamini Y, Mirelman A (2019) Hierarchical data-driven analysis of clinical symptoms among patients with Parkinson’s Disease. Front Neurol 10:531

    Article  Google Scholar 

  3. Trinh J, Guella I, Farrer MJ (2014) Disease penetrance of late-onset parkinsonism: a meta-analysis. JAMA Neurol 71:1535–1539

    Article  Google Scholar 

  4. Lawton M, Baig F, Toulson G, Morovat A, Evetts SG, Ben-Shlomo Y, Hu MT (2020) Blood biomarkers with Parkinson’s disease clusters and prognosis: the oxford discovery cohort. Mov Disord 35:279–287

    Article  CAS  Google Scholar 

  5. Ding H, Dhima K, Lockhart KC, Locascio JJ, Hoesing AN, Duong K, Trisini-Lipsanopoulos A, Hayes MT, Sohur US, Wills AM, Mollenhauer B, Flaherty AW, Hung AY, Mejia N, Khurana V, Gomperts SN, Selkoe DJ, Schwarzschild MA, Schlossmacher MG, Hyman BT, Sudarsky LR, Growdon JH, Scherzer CR (2013) Unrecognized vitamin D3 deficiency is common in Parkinson disease: Harvard Biomarker Study. Neurology 81:1531–1537

    Article  CAS  Google Scholar 

  6. Heinzel S, Berg D, Gasser T, Chen H, Yao C, Postuma RB, Disease MDSTFotDoPs (2019) Update of the MDS research criteria for prodromal Parkinson’s disease. Mov Disord 34:1464–1470

    Article  Google Scholar 

  7. Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S210-212

    Article  Google Scholar 

  8. Shah N, Parikh V, Patel N, Patel N, Badheka A, Deshmukh A, Rathod A, Lafferty J (2014) Neutrophil lymphocyte ratio significantly improves the Framingham risk score in prediction of coronary heart disease mortality: insights from the National Health and Nutrition Examination Survey-III. Int J Cardiol 171:390–397

    Article  Google Scholar 

  9. Nam GE, Kim NH, Han K, Choi KM, Chung HS, Kim JW, Han B, Cho SJ, Jung SJ, Yu JH, Park YG, Kim SM (2019) Chronic renal dysfunction, proteinuria, and risk of Parkinson’s disease in the elderly. Mov Disord 34:1184–1191

    Article  Google Scholar 

  10. Zimran A, Altarescu G, Rudensky B, Abrahamov A, Elstein D (2005) Survey of hematological aspects of Gaucher disease. Hematology 10:151–156

    Article  Google Scholar 

  11. Thaler A, Gurevich T, Bar Shira A, Gana Weisz M, Ash E, Shiner T, Orr-Urtreger A, Giladi N, Mirelman A (2017) A “dose” effect of mutations in the GBA gene on Parkinson’s disease phenotype. Parkinsonism Relat Disord 36:47–51

    Article  Google Scholar 

  12. Dzamko N, Geczy CL, Halliday GM (2015) Inflammation is genetically implicated in Parkinson’s disease. Neuroscience 302:89–102

    Article  CAS  Google Scholar 

  13. Thaler A, Bregman N, Gurevich T, Shiner T, Dror Y, Zmira O, Gan-Or Z, Bar-Shira A, Gana-Weisz M, Orr-Urtreger A, Giladi N, Mirelman A (2018) Parkinson's disease phenotype is influenced by the severity of the mutations in the GBA gene. Parkinsonism Relat Disord 55:45–49. https://doi.org/10.1016/j.parkreldis.2018.05.009

    Article  PubMed  Google Scholar 

  14. Goldstein O, Gana-Weisz M, Cohen-Avinoam D, Shiner T, Thaler A, Cedarbaum JM, John S, Lalioti M, Gurevich T, Bar-Shira A, Mirelman A, Giladi N, Orr-Urtreger A (2019) Revisiting the non-Gaucher-GBA-E326K carrier state: is it sufficient to increase Parkinson's disease risk? Mol Genet Metab 128(4):470–475. https://doi.org/10.1016/j.ymgme.2019.10.001

    Article  CAS  PubMed  Google Scholar 

  15. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N, Movement Disorder Society URTF (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23:2129–2170

    Article  Google Scholar 

  16. Storch A, Schneider CB, Klingelhofer L, Odin P, Fuchs G, Jost WH, Martinez-Martin P, Koch R, Reichmann H, Chaudhuri KR, NoMoFlu PDsg, Ebersbach G (2015) Quantitative assessment of non-motor fluctuations in Parkinson’s disease using the Non-Motor Symptoms Scale (NMSS). J Neural Transm (Vienna) 122:1673–1684

    Article  Google Scholar 

  17. Madero M, Sarnak MJ (2011) Creatinine-based formulae for estimating glomerular filtration rate: is it time to change to chronic kidney disease epidemiology collaboration equation? Curr Opin Nephrol Hypertens 20:622–630

    Article  Google Scholar 

  18. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098

    CAS  PubMed  Google Scholar 

  19. Keane WF, Eknoyan G (1999) Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am J Kidney Dis 33:1004–1010

    Article  CAS  Google Scholar 

  20. Oh YS, Kim JS, Park HE, Song IU, Park JW, Yang DW, Son BC, Lee SH, Lee KS (2016) Association between urine protein/creatinine ratio and cognitive dysfunction in Lewy body disorders. J Neurol Sci 362:258–262

    Article  CAS  Google Scholar 

  21. Currie G, Delles C (2013) Proteinuria and its relation to cardiovascular disease. Int J Nephrol Renovasc Dis 7:13–24

    PubMed  PubMed Central  Google Scholar 

  22. Raj DS, Dominic EA, Pai A, Osman F, Morgan M, Pickett G, Shah VO, Ferrando A, Moseley P (2005) Skeletal muscle, cytokines, and oxidative stress in end-stage renal disease. Kidney Int 68:2338–2344

    Article  CAS  Google Scholar 

  23. Del Tredici K, Braak H (2012) Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov Disord 27:597–607

    Article  Google Scholar 

  24. Azab B, Camacho-Rivera M, Taioli E (2014) Average values and racial differences of neutrophil lymphocyte ratio among a nationally representative sample of United States subjects. PLoS ONE 9:e112361

    Article  Google Scholar 

  25. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  Google Scholar 

  26. Luo X, Ou R, Dutta R, Tian Y, Xiong H, Shang H (2018) Association between serum vitamin D levels and Parkinson’s disease: a systematic review and meta-analysis. Front Neurol 9:909

    Article  Google Scholar 

  27. Hu W, Wang L, Chen B, Wang X (2020) Vitamin D receptor rs2228570 polymorphism and Parkinson’s disease risk in a Chinese population. Neurosci Lett 717:134722

    Article  CAS  Google Scholar 

  28. Deng Q, Zhou X, Chen J, Pan M, Gao H, Zhou J, Wang D, Chen Q, Zhang X, Wang Q, Xu Y (2017) Lower hemoglobin levels in patients with Parkinson’s disease are associated with disease severity and iron metabolism. Brain Res 1655:145–151

    Article  CAS  Google Scholar 

  29. Guidi GC, Lechi Santonastaso C (2010) Advancements in anemias related to chronic conditions. Clin Chem Lab Med 48:1217–1226

    Article  CAS  Google Scholar 

  30. Dzamko N, Rowe DB, Halliday GM (2016) Increased peripheral inflammation in asymptomatic leucine-rich repeat kinase 2 mutation carriers. Mov Disord 31:889–897

    Article  CAS  Google Scholar 

  31. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15:1257–1272

    Article  Google Scholar 

  32. Bakshi R, Macklin EA, Logan R, Zorlu MM, Xia N, Crotty GF, Zhang E, Chen X, Ascherio A, Schwarzschild MA (2019) Higher urate in LRRK2 mutation carriers resistant to Parkinson disease. Ann Neurol 85:593–599

    Article  CAS  Google Scholar 

  33. Schwarzschild MA, Macklin EA, Bakshi R, Battacharyya S, Logan R, Espay AJ, Hung AY, Bwala G, Goetz CG, Russell DS, Goudreau JL, Parashos SA, Saint-Hilaire MH, Rudolph A, Hare JM, Curhan GC, Ascherio A, Parkinson Study Group S-PDI (2019) Sex differences by design and outcome in the Safety of Urate Elevation in PD (SURE-PD) trial. Neurology 93:e1328–e1338

    Article  CAS  Google Scholar 

  34. Price CP, Newall RG, Boyd JC (2005) Use of protein:creatinine ratio measurements on random urine samples for prediction of significant proteinuria: a systematic review. Clin Chem 51:1577–1586

    Article  CAS  Google Scholar 

  35. Thaler A, Shenhar-Tsarfaty S, Shaked Y, Gurevich T, Omer N, Bar-Shira A, Gana-Weisz M, Goldstein O, Kestenbaum M, Cedarbaum JM, Orr-Urtreger A, Giladi N, Mirelman A (2020) Metabolic syndrome does not influence the phenotype of LRRK2 and GBA related Parkinson’s disease. Sci Rep 10:9329

    Article  CAS  Google Scholar 

  36. Gan-Or Z, Amshalom I, Kilarski LL, Bar-Shira A, Gana-Weisz M, Mirelman A, Marder K, Bressman S, Giladi N, Orr-Urtreger A (2015) Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology 84:880–887

    Article  CAS  Google Scholar 

  37. McNeill A, Duran R, Proukakis C, Bras J, Hughes D, Mehta A, Hardy J, Wood NW, Schapira AH (2012) Hyposmia and cognitive impairment in Gaucher disease patients and carriers. Mov Disord 27:526–532

    Article  Google Scholar 

  38. Simuni T, Uribe L, Cho HR, Caspell-Garcia C, Coffey CS, Siderowf A, Trojanowski JQ, Shaw LM, Seibyl J, Singleton A, Toga AW, Galasko D, Foroud T, Tosun D, Poston K, Weintraub D, Mollenhauer B, Tanner CM, Kieburtz K, Chahine LM, Reimer A, Hutten SJ, Bressman S, Marek K, Investigators P (2020) Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson’s Progression Markers Initiative (PPMI): a cross-sectional study. Lancet Neurol 19:71–80

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by Biogen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avner Thaler.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Ethics approval

This work was approved by the Tel-Aviv Medical Center IRB.

Consent of participants

All participants signed an informed consent prior to being recruited to this study.

Consent for publication

All authors have read and approved this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thaler, A., Omer, N., Giladi, N. et al. Biochemical markers for severity and risk in GBA and LRRK2 Parkinson’s disease. J Neurol 268, 1517–1525 (2021). https://doi.org/10.1007/s00415-020-10325-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10325-4

Keywords

Navigation