Skip to main content

Advertisement

Log in

The sex-dependent role of the glucocorticoid receptor in depression: variations in the NR3C1 gene are associated with major depressive disorder in women but not in men

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Genetic variations in the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) have been associated with maladaptive stress responses and major depressive disorder (MDD). In a case–control study design, we examined whether single nucleotide polymorphisms (SNPs) and haploid genotype (haplotype) associations of MR gene NR3C2, GR gene NR3C1 and genes of GR chaperone molecules FK506 binding protein 5 (FKBP5) and corticotrophin-releasing hormone receptor 1 (CRHR1) differed between healthy subjects (n = 634) and inpatients with major depressive disorder (n = 412). All analyses were conducted for women and men separately. After conservative correction of Type-I-error to obtain reliable p values, one SNP in the NR3C1 gene, namely rs6195, showed a significant association with the presence of a major depression (p = 0.048) in females. In contrast, NR3C2, FKBP5 and CRHR1 polymorphisms were not significantly associated with MDD. No haplotype effects could be identified. Our results support the notion of an association between variants of GR-related genes in women and the pathophysiology of depression: females suffering from MDD showed a more than three times higher frequency of the T/C polymorphism compared to controls, which thus seems to increase the vulnerability to depression in females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implicatons for therapy. J Affect Disord 62:77–91

    Article  CAS  PubMed  Google Scholar 

  2. Belvederi Murri M, Pariante C, Mondelli V et al (2014) HPA axis and aging in depression: systematic review and meta-analysis. Psychoneuroendocrinology 41:46–62

    Article  CAS  PubMed  Google Scholar 

  3. Lopez-Duran NL, Kovacs M, George CJ (2009) Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents: a meta-analysis. Psychoneuroendocrinology 34:1272–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stetler C, Miller GE (2011) Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med 73:114–126

    Article  PubMed  Google Scholar 

  5. Hsu SY, Hsueh AJ (2001) Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med 7:605–611

    Article  CAS  PubMed  Google Scholar 

  6. Kloet ER (2004) Hormones and the stressed brain. Ann NY Acad Sci 1018:1–15

    Article  PubMed  Google Scholar 

  7. Reul J, Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511

    Article  CAS  PubMed  Google Scholar 

  8. de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease 1. Endocr Rev 19:269–301

    PubMed  Google Scholar 

  9. de Kloet ER, DeRijk RH, Meijer OC (2007) Therapy insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression? Nat Clin Pract Endocrinol Metab 3:168–179

    Article  PubMed  Google Scholar 

  10. Jacobson L, Sapolsky R (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 12:118–134

    Article  CAS  PubMed  Google Scholar 

  11. Funder MD (1997) Glucocorticoid and mineralocorticoid receptors: biology and clinical relevance. Annu Rev Med 48:231–240

    Article  Google Scholar 

  12. Young EA, Lopez JF, Murphy-Weinberg V et al (2003) Mineralocorticoid receptor function in major depression. Arch Gen Psychiatry 60:24–28

    Article  CAS  PubMed  Google Scholar 

  13. Ising M, Horstmann S, Kloiber S et al (2007) Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression—a potential biomarker? Biol Psychiatry 62:47–54

    Article  CAS  PubMed  Google Scholar 

  14. Klok MD, Alt SR, Irurzun Lafitte AJ et al (2011) Decreased expression of mineralocorticoid receptor mRNA and its splice variants in postmortem brain regions of patients with major depressive disorder. J Psychiatr Res 45:871–878

    Article  PubMed  Google Scholar 

  15. Klok MD, Vreeburg SA, Penninx BW et al (2011) Common functional mineralocorticoid receptor polymorphisms modulate the cortisol awakening response: interaction with SSRIs. Psychoneuroendocrinology 36:484–494

    Article  CAS  PubMed  Google Scholar 

  16. Qi X-R, Kamphuis W, Wang S et al (2013) Aberrant stress hormone receptor balance in the human prefrontal cortex and hypothalamic paraventricular nucleus of depressed patients. Psychoneuroendocrinology 38:863–870

    Article  CAS  PubMed  Google Scholar 

  17. Schatzberg AF, Keller J, Tennakoon L et al (2014) HPA axis genetic variation, cortisol and psychosis in major depression. Mol Psychiatry 19:220–227. doi:10.1038/mp.2013.129

    Article  CAS  PubMed  Google Scholar 

  18. ter Heegde F, De Rijk RH, Vinkers CH (2015) The brain mineralocorticoid receptor and stress resilience. Psychoneuroendocrinology 52:92–110

    Article  PubMed  Google Scholar 

  19. Kudielka BM, Kirschbaum C (2005) Sex differences in HPA axis responses to stress: a review. Biol Psychol 69:113–132. doi:10.1016/j.biopsycho.2004.11.009

    Article  PubMed  Google Scholar 

  20. Bangasser DA, Valentino RJ (2012) Sex differences in molecular and cellular substrates of stress. Cell Mol Neurobiol 32:709–723. doi:10.1007/s10571-012-9824-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klok MD, Giltay EJ, Van der Does AJ et al (2011) A common and functional mineralocorticoid receptor haplotype enhances optimism and protects against depression in females. Transl Psychiatry 1:e62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vinkers CH, Joëls M, Milaneschi Y et al (2015) Mineralocorticoid receptor haplotypes sex-dependently moderate depression susceptibility following childhood maltreatment. Psychoneuroendocrinology 54:90–102

    Article  CAS  PubMed  Google Scholar 

  23. Binder EB, Salyakina D, Lichtner P et al (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36:1319–1325

    Article  CAS  PubMed  Google Scholar 

  24. Kirchheiner J, Lorch R, Lebedeva E et al (2008) Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics 9(7):841–846

    Article  CAS  PubMed  Google Scholar 

  25. Lekman M, Laje G, Charney D et al (2008) The <i> FKBP5 </i>-Gene in Depression and Treatment Response—an Association Study in the Sequenced Treatment Alternatives to Relieve Depression (STAR* D) Cohort. Biol Psychiatry 63:1103–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Z, Zhu F, Wang G et al (2006) Association of corticotropin-releasing hormone receptor1 gene SNP and haplotype with major depression. Neurosci Lett 404:358–362

    Article  CAS  PubMed  Google Scholar 

  27. Hsu DT, Mickey BJ, Langenecker SA et al (2012) Variation in the corticotropin-releasing hormone receptor 1 (CRHR1) gene influences fMRI signal responses during emotional stimulus processing. J Neurosci 32:3253–3260. doi:10.1523/JNEUROSCI.5533-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Refojo D, Holsboer F (2009) CRH signaling. Ann NY Acad Sci 1179:106–119

    Article  CAS  PubMed  Google Scholar 

  29. Pagliaccio D, Luby JL, Bogdan R et al (2014) Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology 39:1245–1253. doi:10.1038/npp.2013.327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. American Psychiatric Association, Washington

    Google Scholar 

  31. Wittchen H-U, Wunderlich U, Gruschwitz S, Zaudig M (1997) SKID I. Strukturiertes Klinisches Interview für DSM-IV. Achse I: Psychische Störungen. Interviewheft und Beurteilungsheft. Eine deutschsprachige, erweiterte Bearb. d. amerikanischen Originalversion des SKID I

  32. Spijker AT, van Rossum EFC (2012) Glucocorticoid sensitivity in mood disorders. Neuroendocrinology 95:179–186. doi:10.1159/000329846

    Article  CAS  PubMed  Google Scholar 

  33. van Rossum EFC, Binder EB, Majer M et al (2006) Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry 59:681–688. doi:10.1016/j.biopsych.2006.02.007

    Article  PubMed  Google Scholar 

  34. van West D, Van Den Eede F, Del-Favero J et al (2006) Glucocorticoid receptor gene-based SNP analysis in patients with recurrent major depression. Neuropsychopharmacology 31:620–627. doi:10.1038/sj.npp.1300898

    Article  PubMed  Google Scholar 

  35. Zobel A, Jessen F, von Widdern O et al (2008) Unipolar depression and hippocampal volume: impact of DNA sequence variants of the glucocorticoid receptor gene. Am J Med Genet B Neuropsychiatr Genet 147B:836–843. doi:10.1002/ajmg.b.30709

    Article  CAS  PubMed  Google Scholar 

  36. Bradley RG, Binder EB, Epstein MP et al (2008) Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch Gen Psychiatry 65:190–200. doi:10.1001/archgenpsychiatry.2007.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Z, Zhu F, Wang G et al (2007) Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci Lett 414:155–158

    Article  CAS  PubMed  Google Scholar 

  38. Polanczyk G, Caspi A, Williams B et al (2009) Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: replication and extension. Arch Gen Psychiatry 66:978–985. doi:10.1001/archgenpsychiatry.2009.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tyrka AR, Price LH, Gelernter J et al (2009) Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: effects on hypothalamic-pituitary-adrenal axis reactivity. Biol Psychiatry 66:681–685. doi:10.1016/j.biopsych.2009.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wasserman D, Sokolowski M, Rozanov V, Wasserman J (2008) The CRHR1 gene: a marker for suicidality in depressed males exposed to low stress. Genes Brain Behav 7:14–19. doi:10.1111/j.1601-183X.2007.00310.x

    CAS  PubMed  Google Scholar 

  41. Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34:S186–S195. doi:10.1016/j.psyneuen.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  42. Ising M, Depping A-M, Siebertz A et al (2008) Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. Eur J Neurosci 28:389–398. doi:10.1111/j.1460-9568.2008.06332.x

    Article  PubMed  Google Scholar 

  43. Zou Y-F, Wang F, Feng X-L et al (2010) Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neurosci Lett 484:56–61

    Article  CAS  PubMed  Google Scholar 

  44. Bolker B, R Development Core Team (2012) bbmle: Tools for general maximum likelihood estimation. R package version 1.0. 5.2

  45. Gao X, Starmer J, Martin ER (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 32:361

    Article  PubMed  Google Scholar 

  46. Warnes GR, Bolker B, Lumley T (2014) gtools: Various R programming tools. R package version 3(1)

  47. Lin DY, Zeng D (2006) Likelihood-based inference on haplotype effects in genetic association studies. J Am Stat Assoc 101:89–104

    Article  CAS  Google Scholar 

  48. Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  CAS  PubMed  Google Scholar 

  49. Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9:471–481

    Article  CAS  PubMed  Google Scholar 

  50. Rajeevan MS, Smith AK, Dimulescu I et al (2007) Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome. Genes Brain Behav 6:167–176

    Article  CAS  PubMed  Google Scholar 

  51. Supriyanto I, Sasada T, Fukutake M et al (2011) Association of FKBP5 gene haplotypes with completed suicide in the Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 35:252–256

    Article  CAS  PubMed  Google Scholar 

  52. Calfa G, Kademian S, Ceschin D et al (2003) Characterization and functional significance of glucocorticoid receptors in patients with major depression: modulation by antidepressant treatment. Psychoneuroendocrinology 28:687–701

    Article  CAS  PubMed  Google Scholar 

  53. Ceulemans S, De Zutter S, Heyrman L et al (2011) Evidence for the involvement of the glucocorticoid receptor gene in bipolar disorder in an isolated northern Swedish population. Bipolar Disord 13:614–623

    Article  CAS  PubMed  Google Scholar 

  54. Young EA (1995) Glucocorticoid cascade hypothesis revisited: role of gonadal steroids. Depression 3:20–27

    Article  Google Scholar 

  55. Vamvakopoulos NC, Chrousos GP (1993) Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimorphism of the stress response and immune/inflammatory reaction. J Clin Invest 92:1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bogdan R, Williamson DE, Hariri AR (2012) Mineralocorticoid receptor iso/val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. Am J Psychiatry 169:515–522. doi:10.1176/appi.ajp.2011.11060855

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luijk MPCM, Tharner A, Bakermans-Kranenburg MJ et al (2011) The association between parenting and attachment security is moderated by a polymorphism in the mineralocorticoid receptor gene: evidence for differential susceptibility. Biol Psychol 88:37–40. doi:10.1016/j.biopsycho.2011.06.005

    Article  PubMed  Google Scholar 

  58. Hardeveld F, Spijker J, De Graaf R et al (2010) Prevalence and predictors of recurrence of major depressive disorder in the adult population. Acta Psychiatr Scand 122:184–191. doi:10.1111/j.1600-0447.2009.01519.x

    Article  CAS  PubMed  Google Scholar 

  59. Bulloch A, Williams J, Lavorato D, Patten S (2014) Recurrence of major depressive episodes is strongly dependent on the number of previous episodes. Depress Anxiety 31:72–76. doi:10.1002/da.22173

    Article  PubMed  Google Scholar 

  60. Patten SB, Williams JVA, Lavorato DH et al (2012) Depressive episode characteristics and subsequent recurrence risk. J Affect Disord 140:277–284. doi:10.1016/j.jad.2012.02.006

    Article  PubMed  Google Scholar 

  61. Kessler RC, Berglund P, Demler O et al (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA, J Am Med Assoc 289:3095–3105. doi:10.1001/jama.289.23.3095

    Article  Google Scholar 

  62. Alonso J, Angermeyer MC, Bernert S et al (2004) Prevalence of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatr Scand 109:21–27

    Article  Google Scholar 

  63. Young E (1994) The role of gonadal steroids in hypothalamic-pituitary-adrenal axis regulation. Crit Rev Neurobiol 9:371–381

    Google Scholar 

Download references

Author contributions

All authors have made substantive intellectual contributions to the submitted work in form of conception of the study, and/or acquisition of data, and/or analysis and interpretation of data, and/or drafting or revising the article. Nina Sarubin, Sven Hilbert, Anna-Maria Wimmer and Cornelius Schüle participated in acquisition of data and manuscript drafting; Caroline Nothdurfter, Rainer Rupprecht and Thomas C. Baghai participated in acquisition of data, manuscript editing and literature search; Cornelius Schüle was responsible for the concept of and conduction of the study; Felix Naumann, Sven Hilbert and Markus Bühner were responsible for the integrity of the data and the accuracy of the data analysis; Peter Zill was responsible for laboratory analysis; All authors approved the final version of the manuscript and take public responsibility for its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Sarubin.

Ethics declarations

Conflict of interest

Rainer Rupprecht has been on AstraZeneca advisory boards. Thomas C. Baghai accepted paid speaking engagements and acted as a consultant for Astra-Zeneca, Glaxo-Smith-Kline, Janssen-Cilag, Pfizer and Servier. Nina Sarubin, Caroline Nothdurfter, Sven Hilbert, Felix Naumann, Markus Bühner, Peter Zill, Anna-Maria Wimmer and Cornelius Schüle reported no direct or indirect financial or personal relationships, interests and affiliations relevant to the subject matter of the manuscript that have occurred over the last 3 years, or that are expected in the foreseeable future.

Additional information

Nina Sarubin and Sven Hilbert contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarubin, N., Hilbert, S., Naumann, F. et al. The sex-dependent role of the glucocorticoid receptor in depression: variations in the NR3C1 gene are associated with major depressive disorder in women but not in men. Eur Arch Psychiatry Clin Neurosci 267, 123–133 (2017). https://doi.org/10.1007/s00406-016-0722-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-016-0722-5

Keywords

Navigation