An update on the CNS manifestations of neurofibromatosis type 2

  • Shannon Coy
  • Rumana Rashid
  • Anat Stemmer-Rachamimov
  • Sandro SantagataEmail author


Neurofibromatosis type II (NF2) is a tumor predisposition syndrome characterized by the development of distinctive nervous system lesions. NF2 results from loss-of-function alterations in the NF2 gene on chromosome 22, with resultant dysfunction of its protein product merlin. NF2 is most commonly associated with the development of bilateral vestibular schwannomas; however, patients also have a predisposition to development of other tumors including meningiomas, ependymomas, and peripheral, spinal, and cranial nerve schwannomas. Patients may also develop other characteristic manifestations such as ocular lesions, neuropathies, meningioangiomatosis, and glial hamartia. NF2 has a highly variable clinical course, with some patients exhibiting a severe phenotype and development of multiple tumors at an early age, while others may be nearly asymptomatic throughout their lifetime. Despite the high morbidity associated with NF2 in severe cases, management of NF2-associated lesions primarily consists of surgical resection and treatment of symptoms, and there are currently no FDA-approved systemic therapies that address the underlying biology of the syndrome. Refinements to the diagnostic criteria of NF2 have been proposed over time due to increasing understanding of clinical and molecular data. Large-population studies have demonstrated that some features such as the development of gliomas and neurofibromas, currently included as diagnostic criteria, may require further clarification and modification. Meanwhile, burgeoning insights into the molecular biology of NF2 have shed light on the etiology and highly variable severity of the disease and suggested numerous putative molecular targets for therapeutic intervention. Here, we review the clinicopathologic features of NF2, current understanding of the molecular biology of NF2, particularly with regard to central nervous system lesions, ongoing therapeutic studies, and avenues for further research.


Neurofibromatosis type 2 Neurofibromatosis type II NF2 Epidemiology of familial tumor syndromes Schwannomatosis Merlin Schwannomin ERM (ezrin/radixin/moesin) family scaffolding Vestibular schwannoma Meningioma Glioma Ependymoma Neurofibroma Plexiform schwannoma Intraneural schwannoma Cellular schwannoma Posterior subcapsular lenticular opacities LZTR1 SH3PXD2A-HTRA1 Verocay body SUFU SMARCE1 SMARCB1 Meningioangiomatosis Glial micro-hamartoma Glial hamartia Wishart Gardner Von Recklinghausen Manchester (NIH) Criteria Manchester Criteria Schwannoma Central neurofibromatosis Neurofibromin 2 Acoustic neuroma 



We thank David Solomon, Sarah Becker, Nicole Ullrich, and Hart Lidov for assistance with the manuscript. Sandro Santagata is supported by U2C-CA233262 and U54-CA225088. We thank Jeremy Muhlich and Yu-An Chen for assistance with website development and Peter Sorger for guidance and valuable suggestions. We thank Dana-Farber/Harvard Cancer Center in Boston, MA, for the use of the Specialized Histopathology Core, which provided slide scanning services. Dana-Farber/Harvard Cancer Center is supported in part by an NCI Cancer Center Support Grant #NIH 5 P30 CA06516.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2016) WHO classification of tumors of the central nervous system. IARC/WHO, Lyon, pp 294–303Google Scholar
  2. 2.
    Riccardi VM (1982) Neurofibromatosis: clinical heterogeneity. Curr Probl Cancer 8:1–34CrossRefGoogle Scholar
  3. 3.
    Ruggieri M, Praticò AD, Caltabiano R, Polizzi A (2018) Early history of the different forms of neurofibromatosis from ancient Egypt to the British Empire and beyond: first descriptions, medical curiosities, misconceptions, landmarks, and the persons behind the syndromes. Am J Med Genet A. 176(3):515–550. CrossRefPubMedGoogle Scholar
  4. 4.
    Von Recklinghausen F (1882) Ueber die multiplen fibroma der haut und ihre beziehung zu den multiplen neuromen. A Hirschwald, BerlinGoogle Scholar
  5. 5.
    Wishart JH (1822) Case of tumours in the skull, dura mater, and brain. Edinb Med Surg J 18:393–397PubMedGoogle Scholar
  6. 6.
    Cushing H (1917) Tumors of the nervus acusticus and the syndrome of the cerebello-pontine angle. WB Saunders, PhiladelphiaGoogle Scholar
  7. 7.
    Gardner WJ, Frazier CH (1930) Bilateral acoustic neurofibromas: a clinical study and field survey of a family of five generations with bilateral deafness in thirty eight members. Arch Neurol Psychiatry 23:266–302CrossRefGoogle Scholar
  8. 8.
    Crowe FW, Schull WJ, Neal JV (1956) A clinical pathological and genetic study of multiple neurofibromatosis. Charles C Thomas, SpringfieldGoogle Scholar
  9. 9.
    Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Faryniarz AG, Chao MV et al (1987) Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell 49:589–594CrossRefPubMedGoogle Scholar
  10. 10.
    Rouleau GA, Wertelecki W, Haines JL, Hobbs WJ, Trofatter JA, Seizinger BR et al (1987) Genetic linkage analysis of bilateral acoustic neurofibromatosis to a DNA marker on chromosome 22. Nature 329:246–248CrossRefPubMedGoogle Scholar
  11. 11.
    National Institutes of Health consensus development conference statement on neurofibromatosis (1987). In: National Institutes of Health consensus development conference statement, Jul 13–15, 1987, vol 6(12), pp 1–7Google Scholar
  12. 12.
    MacCollin M, Chiocca EA, Evans DG, Friedman JM, Horvitz R, Jaramillo D et al (2005) Diagnostic criteria for schwannomatosis. Neurology 64(11):1838–1845CrossRefPubMedGoogle Scholar
  13. 13.
    Plotkin SR, Blakeley JO, Evans DG, Hanemann CO, Hulsebos TJ, Hunter-Schaedle K et al (2013) Update from the 2011 international schwannomatosis workshop: from genetics to diagnostic criteria. Am J Med Genet A 161A(3):405–416CrossRefPubMedGoogle Scholar
  14. 14.
    Tinschert S, Naumann I, Stegmann E, Buske A, Kaufmann D, Thiel G et al (2000) Segmental neurofibromatosis is caused by somatic mutation of the neurofibromatosis type 1 (NF1) gene. Eur J Hum Genet 8(6):455–459CrossRefPubMedGoogle Scholar
  15. 15.
    Feiling A, Ward EA (1920) familial form of acoustic tumour. BMJ 10:496–497CrossRefGoogle Scholar
  16. 16.
    Baser ME, Friedman JM, Wallace AJ, Ramsden RT, Joe H, Evans DG (2002) Evaluation of clinical diagnostic criteria for neurofibromatosis 2. Neurology 59(11):1759–1765CrossRefPubMedGoogle Scholar
  17. 17.
    Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, Hoang-Xuan K et al (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363:515–521CrossRefPubMedGoogle Scholar
  18. 18.
    Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM et al (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72:791–800CrossRefPubMedGoogle Scholar
  19. 19.
    Woods R, Friedman JM, Evans DG, Baser ME, Joe H (2003) Exploring the “two-hit hypothesis” in NF2: tests of two-hit and three-hit models of vestibular schwannoma development. Genet Epidemiol 24:265–272CrossRefPubMedGoogle Scholar
  20. 20.
    Halliday D, Emmanouil B, Pretorius P, MacKeith S, Painter S, Tomkins H et al (2017) Genetic severity Score predicts clinical phenotype in NF2. J Med Genet 54(10):657–664. CrossRefPubMedGoogle Scholar
  21. 21.
    Ruggieri M, Iannetti P, Polizzi A, La Mantia I, Spalice A, Giliberto O et al (2005) Earliest clinical manifestations and natural history of neurofibromatosis type 2 (NF2) in childhood: a study of 24 patients. Neuropediatrics 36:21–34CrossRefPubMedGoogle Scholar
  22. 22.
    Evans DGR, Birch JM, Ramsden RT (1999) Paediatric presentation of type 2 neurofibromatosis. Arch Dis Child 81:496–499CrossRefPubMedGoogle Scholar
  23. 23.
    Evans DG, Huson SM, Donnai D, Neary W, Blair V, Teare D et al (1992) A genetic study of type 2 neurofibromatosis in the United Kingdom: I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet 29:841–846CrossRefPubMedGoogle Scholar
  24. 24.
    Evans DGR, Moran A, King A, Saeed S, Gurusinghe N, Ramsden R (2005) Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otol Neurotol 26:93–97CrossRefPubMedGoogle Scholar
  25. 25.
    Evans DG (2009) Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis 19(4):16. CrossRefGoogle Scholar
  26. 26.
    Kluwe L, Mautner V, Heinrich B, Dezube R, Jacoby LB, Friedrich RE et al (2003) Molecular study of frequency of mosaicism in neurofibromatosis 2 patients with bilateral vestibular schwannomas. J Med Genet 40:109–114CrossRefPubMedGoogle Scholar
  27. 27.
    Evans DGR, Wallace A, Trueman L, Wu C-L, Ramsden RT, Strachan T (1998) Somatic mosaicism: a common cause of classic disease in tumor-prone syndromes? Lessons from type 2 neurofibromatosis. Am J Hum Genet 63:727–736PubMedGoogle Scholar
  28. 28.
    Evans DG, Ramsden RT, Shenton A, Gokhale C, Bowers NL, Huson SM et al (2007) Mosaicism in neurofibromatosis type 2: an update of risk based on uni/bilaterality of vestibular schwannoma at presentation and sensitive mutation analysis including multiple ligation-dependent probe amplification. J Med Genet 44(7):424–428CrossRefPubMedGoogle Scholar
  29. 29.
    den Bakker MA, Vissers KJ, Molijn AC, Kros JM, Zwarthoff EC, van der Kwast TH (1999) Expression of the neurofibromatosis type 2 gene in human tissues. J Histochem Cytochem 47(11):1471–1480CrossRefGoogle Scholar
  30. 30.
    Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H et al (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23(8):281–282CrossRefPubMedGoogle Scholar
  31. 31.
    Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA et al (2001) The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 15(8):968–980CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C et al (2006) The tumour-suppressor genes NF2/Merlin and expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8(1):27–36CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J et al (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 19(1):27–38. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Okada T, You L, Giancotti FG (2007) Shedding light on Merlin’s wizardry. Trends Cell Biol 17(5):222–229CrossRefPubMedGoogle Scholar
  35. 35.
    Li W, Cooper J, Zhou L, Yang C, Erdjument-Bromage H, Zagzag D et al (2014) Merlin/NF2 loss-driven tumorigenesis linked to CRL4 (DCAF1)-mediated inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus. Cancer Cell 26(1):48–60CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li W, You L, Cooper J, Schiavon G, Pepe-Caprio A, Zhou L et al (2010) Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4 (DCAF1) in the nucleus. Cell 140(4):477–490. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Stepanova DS, Semenova G, Kuo YM, Andrews AJ, Ammoun S, Hanemann CO et al (2017) An essential role for the tumor-suppressor merlin in regulating fatty acid synthesis. Cancer Res 77(18):5026–5038CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stamenkovic I, Yu Q (2010) Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival. Curr Protein Pept Sci 11(6):471–484CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cooper J, Giancotti FG (2014) Molecular insights into NF2/Merlin tumor suppressor function. FEBS Lett. 588(16):2743–2752. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Painter SL, Sipkova Z, Emmanouil B, Halliday D, Parry A, Elston JS (2018) Neurofibromatosis type 2-related eye disease correlated with genetic severity type. J Neuroophthalmol. CrossRefGoogle Scholar
  41. 41.
    Smith MJ, Higgs JE, Bowers NL, Halliday D, Paterson J, Gillespie J et al (2011) Cranial meningiomas in 411 neurofibromatosis type 2 (NF2) patients with proven gene mutations: clear positional effect of mutations, but absence of female severity effect on age at onset. J Med Genet 48(4):261–265. CrossRefPubMedGoogle Scholar
  42. 42.
    Evans DG, Freeman S, Gokhale C, Wallace A, Lloyd SK, Axon P et al (2015) Manchester NF2 service. Bilateral vestibular schwannomas in older patients: NF2 or chance? J Med Genet 52(6):422–424. CrossRefPubMedGoogle Scholar
  43. 43.
    Smith MJ, Bowers NL, Bulman M, Gokhale C, Wallace AJ, King AT et al (2017) Revisiting neurofibromatosis type 2 diagnostic criteria to exclude LZTR1-related schwannomatosis. Neurology 88(1):87–92. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Evans DG, King AT, Bowers NL, Tobi S, Wallace AJ et al (2018) Identifying the deficiencies of current diagnostic criteria for neurofibromatosis 2 using databases of 2777 individuals with molecular testing. Genet Med. 25:25. CrossRefGoogle Scholar
  45. 45.
    Hanemann CO, Blakeley JO, Nunes FP, Robertson K, Stemmer-Rachamimov A, Mautner V et al (2016) Current status and recommendations for biomarkers and biobanking in neurofibromatosis. Neurology 87(7 Suppl 1):S40–S48CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Parry DM, Eldridge R, Kaiser-Kupfer MI, Bouzas EA, Pikus A, Patronas N (1994) Neurofibromatosis 2 (NF2): clinical characteristics of 63 affected individuals and clinical evidence for heterogeneity. Am J Med Genet 52(4):450–461CrossRefPubMedGoogle Scholar
  47. 47.
    Stivaros SM, Stemmer-Rachamimov AO, Alston R, Plotkin SR, Nadol JB, Quesnel A et al (2015) Multiple synchronous sites of origin of vestibular schwannomas in neurofibromatosis Type 2. J Med Genet 52(8):557–562CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Roosli C, Linthicum FH Jr, Cureoglu S, Merchant SN (2012) What is the site of origin of cochleovestibular schwannomas? Audiol Neurootol. 17(2):121–125CrossRefPubMedGoogle Scholar
  49. 49.
    Gehlhausen JR, Park SJ, Hickox AE, Shew M, Staser K, Rhodes SD et al (2015) A murine model of Neurofibromatosis Type 2 that accurately phenocopies human schwannoma formation. Hum Mol Genet 1:1–8CrossRefGoogle Scholar
  50. 50.
    Maniakas A, Saliba I (2014) Neurofibromatosis type 2 vestibular schwannoma treatment: a review of the literature, trends, and outcomes. Otol Neurotol 35(5):889–894. CrossRefPubMedGoogle Scholar
  51. 51.
    Fisher LM, Doherty JK, Lev MH, Slattery WH III (2007) Distribution of nonvestibular cranial nerve schwannomas in neurofibromatosis 2. Otol Neurotol. 28(8):1083–1090CrossRefPubMedGoogle Scholar
  52. 52.
    Evans DGR, Huson SM, Donnai D, Neary W, Blair V, Newton V et al (1992) A clinical study of type 2 neurofibromatosis. Q J Med 84:603–618PubMedGoogle Scholar
  53. 53.
    Berg JC, Scheithauer BW, Spinner RJ, Allen CM, Koutlas IG (2008) Plexiform schwannoma: a clinicopathologic overview with emphasis on the head and neck region. Hum Pathol 39(5):633–640CrossRefPubMedGoogle Scholar
  54. 54.
    Dewan R, Pemov A, Kim HJ, Morgan KL, Vasquez RA, Chittiboina P et al (2015) Evidence of polyclonality in neurofibromatosis type 2-associated multilobulated vestibular schwannomas. Neuro Oncol 17(4):566–573. CrossRefPubMedGoogle Scholar
  55. 55.
    Hamada Y, Iwaki T, Fukui M, Tateishi J (1997) A comparative study of embedded nerve tissue in six NF2-associated schwannomas and 17 nonassociated NF2 schwannomas. Surg Neurol 48(4):395–400CrossRefPubMedGoogle Scholar
  56. 56.
    Hilton DA, Hanemann CO (2014) Schwannomas and their pathogenesis. Brain Pathol 24(3):205–220. CrossRefPubMedGoogle Scholar
  57. 57.
    Stemmer-Rachamimov AO, Ino Y, Lim ZY, Jacoby LB, MacCollin M, Gusella JF et al (1998) Loss of the NF2 gene and merlin occur by the tumorlet stage of schwannoma development in neurofibromatosis 2. J Neuropathol Exp Neurol 57(12):1164–1167CrossRefPubMedGoogle Scholar
  58. 58.
    Röhrich M, Koelsche C, Schrimpf D, Capper D, Sahm F, Kratz A et al (2016) Methylation-based classification of benign and malignant peripheral nerve sheath tumors. Acta Neuropathol 131(6):877–887CrossRefPubMedGoogle Scholar
  59. 59.
    Koontz NA, Wiens AL, Agarwal A, Hingtgen CM, Emerson RE, Mosier KM (2013) Schwannomatosis: the overlooked neurofibromatosis? AJR Am J Roentgenol 200(6):W646–W653. CrossRefPubMedGoogle Scholar
  60. 60.
    King AT, Rutherford SA, Hammerbeck-Ward C, Lloyd SK, Freeman SR, Pathmanaban ON (2018) Malignant peripheral nerve sheath tumors are not a feature of neurofibromatosis type 2 in the unirradiated patient. Neurosurgery 83(1):38–42CrossRefPubMedGoogle Scholar
  61. 61.
    Plotkin SR, Stemmer-Rachamimov AO, Barker FG II, Halpin C, Padera TP, Tyrrell A et al (2009) Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med 361(4):358–367CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gao X, Zhao Y, Stemmer-Rachamimov AO, Liu H, Huang P, Chin S et al (2015) Anti-VEGF treatment improves neurological function and augments radiation response in NF2 schwannoma model. Proc Natl Acad Sci USA 112(47):14676–14681. CrossRefPubMedGoogle Scholar
  63. 63.
    Hochart A, Gaillard V, Baroncini M, André N, Vannier JP, Vinchon M et al (2015) Bevacizumab decreases vestibular schwannomas growth rate in children and teenagers with neurofibromatosis type 2. J Neurooncol 124(2):229–236CrossRefPubMedGoogle Scholar
  64. 64.
    Hilton DA, Ristic N, Hanemann CO (2009) Activation of ERK, AKT and JNK signalling pathways in human schwannomas in situ. Histopathology 55(6):744–749. CrossRefPubMedGoogle Scholar
  65. 65.
    Morrison H, Sperka T, Manent J, Giovannini M, Ponta H, Herrlich P (2007) Merlin/neurofibromatosis type 2 suppresses growth by inhibiting the activation of Ras and Rac. Cancer Res 67(2):520–527CrossRefPubMedGoogle Scholar
  66. 66.
    Ammoun S, Schmid MC, Ristic N, Zhou L, Hilton D, Ercolano E, Carroll C, Hanemann CO (2012) The role of insulin-like growth factors signaling in merlin deficient human schwannomas. Glia 60(11):1721–1733CrossRefPubMedGoogle Scholar
  67. 67.
    Fuse MA, Dinh CT, Vitte J, Kirkpatrick J, Mindos T, Plati SK et al (2019) Preclinical assessment of MEK1/2 inhibitors for neurofibromatosis type 2-associated schwannomas reveal differences in efficacy and drug resistance development. Neuro Oncol. CrossRefPubMedGoogle Scholar
  68. 68.
    Ammoun S, Schmid MC, Triner J, Manley P, Hanemann CO (2011) Nilotinib alone or in combination with selumetinib is a drug candidate for neurofibromatosis type 2. Neuro Oncol. 13(7):759–766. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Goutagny S, Raymond E, Esposito-Farese M, Trunet S, Mawrin C, Bernardeschi D et al (2015) Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. J Neurooncol 122(2):313–320. CrossRefPubMedGoogle Scholar
  70. 70.
    Giovannini M, Bonne NX, Vitte J, Chareyre F, Tanaka K, Adams R et al (2014) mTORC1 inhibition delays growth of neurofibromatosis type 2 schwannoma. Neuro Oncol. 16(4):493–504. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Breun M, Schwerdtfeger A, Martellotta DD, Kessler AF, Perez JM, Monoranu CM et al (2018) CXCR72: a new player in vestibular schwannoma pathogenesis. Oncotarget 9(11):9940–9950. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Zhao Y, Liu P, Zhang N, Chen J, Landegger LD, Wu L et al (2018) Targeting the cMET pathway augments radiation response without adverse effect on hearing in NF2 schwannoma models. Proc Natl Acad Sci USA 115(9):E2077–E2084. CrossRefPubMedGoogle Scholar
  73. 73.
    Wang S, Liechty B, Patel S, Weber JS, Hollmann TJ, Snuderl M et al (2018) Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol 138(1):183–190. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Paldor I, Abbadi S, Bonne N, Ye X, Rodriguez FJ, Rowshanshad D et al (2017) The efficacy of lapatinib and nilotinib in combination with radiation therapy in a model of NF2 associated peripheral schwannoma. J Neurooncol 135(1):47–56. CrossRefPubMedGoogle Scholar
  75. 75.
    Agnihotri S, Jalali S, Wilson MR, Danesh A, Li M, Klironomos G et al (2016) The genomic landscape of schwannoma. Nat Genet 48(11):1339–1348CrossRefPubMedGoogle Scholar
  76. 76.
    Mautner VF, Tatagiba M, Lindenau M, Fünsterer C, Pulst SM, Baser ME et al (1995) Spinal tumors in patients with neurofibromatosis type 2: MR imaging study of frequency, multiplicity, and variety. AJR Am J Roentgenol 165(4):951–955CrossRefPubMedGoogle Scholar
  77. 77.
    Goutagny S, Kalamarides M (2010) Meningiomas and neurofibromatosis. J Neurooncol 99(3):341–347. CrossRefPubMedGoogle Scholar
  78. 78.
    Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339(6123):1077–1080. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Baser ME, Friedman JM, Aeschliman D, Joe H, Wallace AJ, Ramsden RT et al (2002) Predictors of the risk of mortality in neurofibromatosis 2. Am J Hum Genet 71(4):715–723CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Abedalthagafi M, Bi WL, Aizer AA, Merrill PH, Brewster R, Agarwalla PK et al (2016) Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol 18(5):649–655. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Perry A, Giannini C, Raghavan R, Scheithauer BW, Banerjee R, Margraf L et al (2001) Aggressive phenotypic and genotypic features in pediatric and NF2-associated meningiomas: a clinicopathologic study of 53 cases. J Neuropathol Exp Neurol 60(10):994–1003CrossRefPubMedGoogle Scholar
  82. 82.
    Aavikko M, Li SP, Saarinen S, Alhopuro P, Kaasinen E, Morgunova E et al (2012) Loss of SUFU function in familial multiple meningioma. Am J Hum Genet 91(3):520–526. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Smith MJ, Wallace AJ, Bennett C, Hasselblatt M, Elert-Dobkowska E, Evans LT et al (2014) Germline SMARCE1 mutations predispose to both spinal and cranial clear cell meningiomas. J Pathol 234(4):436–440. CrossRefPubMedGoogle Scholar
  84. 84.
    van den Munckhof P, Christiaans I, Kenter SB, Baas F, Hulsebos TJ (2012) Germline SMARCB1 mutation predisposes to multiple meningiomas and schwannomas with preferential location of cranial meningiomas at the falx cerebri. Neurogenetics 13(1):1–7. CrossRefPubMedGoogle Scholar
  85. 85.
    Dewan R, Pemov A, Dutra AS, Pak ED, Edwards NA, Ray-Chaudhury A et al (2017) First insight into the somatic mutation burden of neurofibromatosis type 2-associated grade I and grade II meningiomas: a case report comprehensive genomic study of two cranial meningiomas with vastly different clinical presentation. BMC Cancer 17(1):127CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachamimov AO et al (2009) NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 29(15):4250–4261. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Goutagny S, Giovannini M, Kalamarides M (2017) A 4-year phase II study of everolimus in NF2 patients with growing vestibular schwannomas. J Neurooncol 133(2):443–445. CrossRefPubMedGoogle Scholar
  88. 88.
    Angus SP, Oblinger JL, Stuhlmiller TJ, DeSouza PA, Beauchamp RL, Witt L et al (2018) EPH receptor signaling as a novel therapeutic target in NF2-deficient meningioma. Neuro Oncol 20(9):1185–1196CrossRefPubMedGoogle Scholar
  89. 89.
    Shapiro IM, Kolev VN, Vidal CM, Kadariya Y, Ring JE, Wright Q et al (2014) Merlin deficiency predicts FAK inhibitor sensitivity: a synthetic lethal relationship. Sci Transl Med. 6(237):237ra68. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Shah NR, Tancioni I, Ward KK, Lawson C, Chen XL, Jean C et al (2014) Analyses of merlin/NF2 connection to FAK inhibitor responsiveness in serous ovarian cancer. Gynecol Oncol 134(1):104–111. CrossRefPubMedGoogle Scholar
  91. 91.
    Soria JC, Gan HK, Blagden SP, Plummer R, Arkenau HT, Ranson M et al (2016) A phase I, pharmacokinetic and pharmacodynamic study of GSK2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumors. Ann Oncol 27(12):2268–2274. CrossRefPubMedGoogle Scholar
  92. 92.
    Shimizu T, Fukuoka K, Takeda M, Iwasa T, Yoshida T, Horobin J et al (2016) A first-in-Asian phase 1 study to evaluate safety, pharmacokinetics and clinical activity of VS-6063, a focal adhesion kinase (FAK) inhibitor in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 77(5):997–1003CrossRefPubMedGoogle Scholar
  93. 93.
    Synodos for NF2 Consortium, Allaway R, Angus SP, Beauchamp RL, Blakeley JO, Bott M et al (2018) Traditional and systems biology based drug discovery for the rare tumor syndrome neurofibromatosis type 2. PLoS One 13(6):e0197350CrossRefGoogle Scholar
  94. 94.
    Plotkin SR, O’Donnell CC, Curry WT, Bove CM, MacCollin M, Nunes FP (2011) Spinal ependymomas in neurofibromatosis Type 2: a retrospective analysis of 55 patients. J Neurosurg Spine. 14(4):543–547CrossRefPubMedGoogle Scholar
  95. 95.
    Hagel C, Stemmer-Rachamimov AO, Bornemann A, Schuhmann M, Nagel C, Huson S et al (2012) Clinical presentation, immunohistochemistry and electron microscopy indicate neurofibromatosis type 2-associated gliomas to be spinal ependymomas. Neuropathology 32(6):611–616. CrossRefPubMedGoogle Scholar
  96. 96.
    Kalamarides M, Essayed W, Lejeune JP, Aboukais R, Sterkers O, Bernardeschi D et al (2018) Spinal ependymomas in NF2: a surgical disease? J Neurooncol 136(3):605–611CrossRefPubMedGoogle Scholar
  97. 97.
    Farschtschi S, Merker VL, Wolf D, Schuhmann M, Blakeley J, Plotkin SR et al (2016) Bevacizumab treatment for symptomatic spinal ependymomas in neurofibromatosis type 2. Acta Neurol Scand 133(6):475–480CrossRefPubMedGoogle Scholar
  98. 98.
    King AT, Rutherford SA, Hammerbeck-Ward C, Lloyd SK, Freeman SM, Pathmanaban ON et al (2018) High-grade glioma is not a feature of neurofibromatosis type 2 in the unirradiated patient. Neurosurgery 83(2):193–196. CrossRefPubMedGoogle Scholar
  99. 99.
    Tomkinson C, Lu JQ (2018) Meningioangiomatosis: a review of the variable manifestations and complex pathophysiology. J Neurol Sci 15(392):130–136. CrossRefGoogle Scholar
  100. 100.
    Perry A, Kurtkaya-Yapicier O, Scheithauer BW, Robinson S, Prayson RA, Kleinschmidt-DeMasters BK et al (2005) Insights into meningioangiomatosis with and without meningioma: a clinicopathologic and genetic series of 24 cases with review of the literature. Brain Pathol 15(1):55–65CrossRefPubMedGoogle Scholar
  101. 101.
    Wiebe S, Munoz DG, Smith S, Lee DH (1999) Meningioangiomatosis. A comprehensive analysis of clinical and laboratory features. Brain 122(Pt 4):709–726CrossRefPubMedGoogle Scholar
  102. 102.
    Rubinstein LJ (1986) The malformative central nervous system lesions in the central and peripheral forms of neurofibromatosis. A neuropathological study of 22 cases. Ann N Y Acad Sci. 486:14–29CrossRefPubMedGoogle Scholar
  103. 103.
    Bassoe P, Nuzum F (1912) Report of a case of central and peripheral neurofibromatosis. J Nerv Ment Dis 42:785–796CrossRefGoogle Scholar
  104. 104.
    Stemmer-Rachamimov AO, Horgan MA, Taratuto AL, Munoz DG, Smith TW, Frosch MP et al (1997) Meningioangiomatosis is associated with neurofibromatosis 2 but not with somatic alterations of the NF2 gene. J Neuropathol Exp Neurol 56(5):485–489CrossRefPubMedGoogle Scholar
  105. 105.
    Perry A, Kurtkaya-Yapicier O, Scheithauer BW, Robinson S, Prayson RA, Kleinschmidt-DeMasters BK et al (2005) Insights into meningioangiomatosis with and without meningioma: a clinicopathologic and genetic series of 24 cases with review of the literature. Brain Pathol 15(1):55–65CrossRefPubMedGoogle Scholar
  106. 106.
    Omeis I, Hillard VH, Braun A, Benzil DL, Murali R, Harter DH (2006) Meningioangiomatosis associated with neurofibromatosis: report of two cases in a single family and review of the literature. Surg Neurol 65(6):595–603CrossRefPubMedGoogle Scholar
  107. 107.
    Wixom C, Chadwick AE, Krous HF (2005) Sudden, unexpected death associated with meningioangiomatosis: case report. Pediatr Dev Pathol 8(2):240–244CrossRefPubMedGoogle Scholar
  108. 108.
    Kim NR, Choe G, Shin SH, Wang KC, Cho BK, Choi KS et al (2002) Childhood meningiomas associated with meningioangiomatosis: report of five cases and literature review. Neuropathol Appl Neurobiol 28(1):48–56CrossRefPubMedGoogle Scholar
  109. 109.
    Jeon TY, Kim JH, Suh YL, Ahn S, Yoo SY, Eo H (2013) Sporadic meningioangiomatosis: imaging findings with histopathologic correlations in seven patients. Neuroradiology 55(12):1439–1446. CrossRefPubMedGoogle Scholar
  110. 110.
    Kashlan ON, Laborde DV, Davison L, Saindane AM, Brat D, Hudgins PA et al (2011) Meningioangiomatosis: a case report and literature review emphasizing diverse appearance on different imaging modalities. Case Rep Neurol Med 2011:361203. CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Nascimento FA, Kiehl TR, Tai PC, Valiante TA, Krings T (2016) Meningioangiomatosis: a disease with many radiological faces. Can J Neurol Sci 43(6):847–849CrossRefPubMedGoogle Scholar
  112. 112.
    Ohta Y, Nariai T, Ishii K, Ishiwata K, Senda M, Okeda R et al (2003) Meningio-angiomatosis in a patient with focal epilepsy: value of PET in diagnoses and preoperative planning of surgery. Acta Neurochir (Wien) 145(7):587–590 (discussion 590-1) CrossRefGoogle Scholar
  113. 113.
    Rossi S, Brenca M, Zanatta L, Trincia E, Guerriero A, Pizzato C et al (2018) A pediatric intra-axial malignant SMARCB1-deficient desmoplastic tumor arising in meningioangiomatosis. J Neuropathol Exp Neurol 77(10):883–889. CrossRefPubMedGoogle Scholar
  114. 114.
    Wiestler OD, von Siebenthal K, Schmitt HP, Feiden W, Kleihues P (1989) Distribution and immunoreactivity of cerebral micro-hamartomas in bilateral acoustic neurofibromatosis (neurofibromatosis 2). Acta Neuropathol 79(2):137–143CrossRefPubMedGoogle Scholar
  115. 115.
    Vargas WS, Heier LA, Rodriguez F, Bergner A, Yohay K (2014) Incidental parenchymal magnetic resonance imaging findings in the brains of patients with neurofibromatosis type 2. Neuroimage Clin 4(4):258–265. CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Stemmer-Rachamimov AO, Gonzalez-Agosti C, Xu L, Burwick JA, Beauchamp R, Pinney D et al (1997) Expression of NF2-encoded merlin and related ERM family proteins in the human central nervous system. J Neuropathol Exp Neurol. 56(6):735–742CrossRefPubMedGoogle Scholar
  117. 117.
    Harder A, Wesemann M, Hagel C, Schittenhelm J, Fischer S, Tatagiba M et al (2012) Hybrid neurofibroma/schwannoma is overrepresented among schwannomatosis and neurofibromatosis patients. Am J Surg Pathol 36(5):702–709CrossRefPubMedGoogle Scholar
  118. 118.
    Montgomery BK, Alimchandani M, Mehta GU, Dewan R, Nesvick CL, Miettinen M et al (2016) Tumors displaying hybrid schwannoma and neurofibroma features in patients with neurofibromatosis type 2. Clin Neuropathol 35(2):78–83. CrossRefPubMedGoogle Scholar
  119. 119.
    Schulz A, Büttner R, Hagel C, Baader SL, Kluwe L, Salamon J et al (2016) The importance of nerve microenvironment for schwannoma development. Acta Neuropathol 132(2):289–307CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Truong K, Ahmad I, Jason Clark J, Seline A, Bertroche T, Mostaert B et al (2018) Nf2 mutation in schwann cells delays functional neural recovery following injury. Neuroscience 15(374):205–213CrossRefGoogle Scholar
  121. 121.
    McLaughlin ME, Pepin SM, Maccollin M, Choopong P, Lessell S (2007) Ocular pathologic findings of neurofibromatosis type 2. Arch Ophthalmol 125(3):389–394CrossRefPubMedGoogle Scholar
  122. 122.
    Mautner VF, Tatagiba M, Guthoff R, Samii M, Pulst SM (1993) Neurofibromatosis 2 in the pediatric age group. Neurosurgery 33:92–96PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Neuropathology, Department of PathologyBrigham and Women’s Hospital, Hale Building for Transformative Medicine, BTM8002PBostonUSA
  2. 2.Department of PathologyBoston Children’s HospitalBostonUSA
  3. 3.Harvard Medical SchoolBostonUSA
  4. 4.Laboratory for Systems Pharmacology, Harvard Program in Therapeutic ScienceBostonUSA
  5. 5.Department of PathologyMassachusetts General HospitalBostonUSA
  6. 6.Ludwig Center at HarvardBostonUSA

Personalised recommendations